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Abstract 
This paper looks at the challenges of designing and implementing an introductory mathematical software course; 

provides an overview of topics covered and resources used for each type of software (Excel, Mathematica, and 

MATLAB); gives examples of homework problems, exam questions, and project topics chosen for the course; and 

addresses issues that have arisen.  

 

1. Introduction 
In fall 2007, I piloted a course, entitled MATHS 159 Introduction to Mathematical Software, in the 

Department of Mathematical Sciences at Ball State University.  MATHS 159 is designed to 

introduce mathematical science majors to “mathematical software” that can be used in both their 

courses and future careers.  The software packages used in this three-credit hour course that 

includes an extra one-hour weekly lab are Excel, Mathematica, and MATLAB, all of which have 

been integrated into various courses throughout our departmental curriculum.  This course, which is 

a direct result of work initiated in spring 2007 by Professors Irene Livshits, Richard Stankewitz, and 

myself, as part of a Ball State Enhanced Provost Initiative Grant, [26], became a requirement for 

ALL of our majors and minors, starting in fall 2008. 

Our department’s rationale for requiring a mathematical software course for our majors is as 

follows:  “Modern mathematics involves the use of software, so it is important that our majors 

understand that computer usage is an integral part of how math is done.  They should also have an 

understanding what computers can do and what computers cannot do.  Currently, most of our math 

majors have difficulty with the technology they encounter in many of their classes.  This in turn 

makes it difficult to incorporate mathematical software into our upper-level courses.   One reason 

may be that most students in our programs don't have a solid foundation in both the mechanics of 

the software and the use of the software as a tool for doing mathematics. … MATHS 159 … taken 

early in a student’s program, will provide a systematic introduction to mathematical software 

packages that are used in many of our upper level courses (currently Excel, Mathematica, and 

MATLAB).  After completing MATHS 159 students will know how to use this software to solve 

problems and will be ready to apply this technology to more advanced problems and concepts.” [9]. 

 

2. Departmental Overview 
The Department of Mathematical Sciences is one of twenty departments in the College of Sciences 

and Humanities, which in turn is one of seven colleges in Ball State University.  Ball State 

University is a public state institution located in Muncie, Indiana, with an enrollment of 

approximately 20,000 students, [4].   In addition to Ball State’s admission criteria of three years of 

college preparatory mathematics in high school (two years of algebra and one year geometry), 

students enrolling in freshman calculus are expected to have completed courses equivalent to 

college algebra and trigonometry.  SAT/ACT scores, departmental placement test scores, or high 

school records that indicate sufficient mathematical background are also accepted, [2], [3].  The 

Department of Mathematical Sciences offers a variety of options in mathematical science for 
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undergraduates:  Actuarial Science, Mathematical Sciences (options in pure and applied 

mathematics), Mathematics Teaching, or Mathematical Economics (joint with the Department of 

Economics).  Non-mathematical science majors can also choose a minor in Mathematics.  In 

addition, there is a graduate program at the master’s level and courses are offered for Elementary 

Education majors who choose a concentration in mathematics, [3], [5].   

In any given semester, approximately 400 students are enrolled in departmental programs, of 

which, about sixty percent are in one of the undergraduate majors.  Of the 240 undergraduate 

majors enrolled in courses for fall 2008, there were 97 Actuarial Science majors, 112 Mathematics 

Teaching majors, and 31 Mathematical Science majors.  All departmental majors take a common 

core of courses which consists of three semesters of calculus, linear algebra, discrete mathematics, a 

senior capstone course, and as of fall 2008, MATHS 159. 

 

3. Software Use in Departmental Courses  
For our calculus sequence, there is a Mathematica component which has varied over the years, 

ranging from a set of required common labs (about three lab assignments per course) to a lab 

component that is required, but instructor-dependent, which is the current set-up.  For linear 

algebra, a computer software component is included (usually Mathematica or MATLAB), with the 

amount included left to the discretion of the instructor.   

After the calculus and linear algebra sequence, mathematical software use in courses varies 

by course, major, and instructor.  Some instructors, such as I, use software or technology in almost 

all of the courses taught, while others may rarely use technology outside of a course in which it is 

required.  Mathematics Teaching majors take a junior-level course on software/technology that can 

be used for their teaching, including applications of graphing calculators, Excel, Logo, and 

Geometer’s Sketchpad.  Actuarial Science majors use Excel extensively in their courses and 

Mathematical Science majors use MATLAB in their numerical analysis courses.  Other courses that 

routinely integrate mathematical software include most of our actuarial science and statistics 

courses (Excel, Minitab, SAS, R), as well as junior level Mathematical Models and Numerical 

Analysis courses (Mathematica, Excel, MATLAB).  Mathematical software is also used in courses 

such as Differential Equations, Partial Differential Equations, and Operations Research 

(Mathematica, Excel, MPL, LINGO).   

All of the software we use is available to students in a departmental lab as well as on a set of 

30 laptops on a mobile cart (Computers on Wheels or COW) that we can move to a lab or 

classroom as needed.  Using the COW, we can turn any classroom into a laptop laboratory.  In 

addition, most of the software is available throughout campus in public labs, many of which are 

open 24 hours. Finally, Ball State students can download free copies of Office 2007 and a student 

version of Mathematica for use on their own computers.  MATLAB is not free, [36], but students can 

download free programs such as Octave, which will run most MATLAB files (including examples 

provided in this paper), [12].  

 

4. Initial Challenges 
For the mathematical software course, at first, all I had for a course guide/template was a course 

master syllabus and a list of technology topics that Professors Livshits, Stankewitz, and I had 

determined were essential for a mathematical science major to be able to use in their future 

coursework and subsequent careers.  The topics were chosen after reflecting on our own personal 

experience as instructors and research mathematicians, as well as consulting with departmental 

colleagues and industry contacts.  From this, I had to create a set of lecture materials, homework 

assignments, and projects at a level appropriate to freshman who would be concurrently enrolled in 

a first-semester calculus course.  
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For Excel, Mathematica, and MATLAB, there are existing textbooks and other reference 

materials that address each software package individually, either as a guide to use the software, 

including [7], [10], [11], [15], [16], [17], [33], [38], [39], and [40] or as a supplement to a Calculus 

course or textbook, such as [8], [13], [19], [21], and [31] but my colleagues and I were not aware of 

any resource that specifically targets all three software packages.  Thus, I needed to make up my 

notes from scratch, with help from appropriate sources as needed.  In addition to showing students 

how to use the software at a basic level, I wanted to incorporate useful examples that would both 

illustrate how to use the software, as well as teach them some basic ideas from calculus, linear 

algebra, and applied mathematics.  All of this had to be done at a level appropriate to students who 

would be enrolled in a first-semester calculus course, especially first-semester freshman. 

For Excel, I started with notes from an introductory short course given at Ball State, [16], 

and [38].  I also relied on Excel’s built-in and online help files [27], [28], an online “generic 

spreadsheet” tutorial [20], and web pages such as the following for using the IF function from 

About.com [14].  A great introduction to the Excel Solver Add-on package for solving simple linear 

programming problems can be found in [18].  For Excel examples that dealt with finance and 

simple linear programming I used material from [25].  Population growth and optimization 

examples came from [29] and [30].  For calculus – based examples and homework, I used material 

from [32].  Finally, a great example that I integrated throughout the course (as we will see below) 

came from the paper [6].   

For Mathematica, my main sources were the excellent built-in help files, a brief introductory 

book, [7], a text version of the built-in help files, [39], Wolfram’s web page [41], and online 

tutorials from Wolfram [42].  I also used material from a tutorial which I had written for our majors 

when they enroll in calculus [22], based in part on material from [13].  Many of the examples for 

this section were calculus – based and found in [19] and [32] (prior to the sections on 

antidifferentiation).  Some of the topics from the Excel section were also revisited to see how they 

could be dealt with in Mathematica. 

My main sources for learning MATLAB basics were the built-in help files, an introductory 

tutorial from the University of Utah, [37], and a more detailed primer that I found online [33]. Most 

of the mathematics for this section was calculus based, at the level of differentiation, Riemann 

sums, and integration.  We also touched on programming and graphing, using examples from the 

previous sections.  For calculus commands I relied extensively on a book by Jenson, [21]. 

Since MATLAB is matrix – based, I also had to bring students up to speed on matrix 

concepts, at the level of introductory linear algebra.  My main sources were a linear algebra 

textbook, [1], and [24], which has a great introduction to matrices.  To help tie the other software to 

MATLAB, we looked at how to solve linear systems in Excel and Mathematica.   For Excel, I found 

a web supplement that shows how to solve a system of equations with the Solver, as well as how to 

subtract, multiply, and invert matrices, [35].  My goal was to make it clear (after using the other two 

software packages) that MATLAB is more natural for working with matrices. 

 

5. Introductory Survey 
One of the tools that I have found helpful in my courses is a survey handed out on the first day of 

class.  In addition to standard questions such as major, math courses taken, or types of mathematical 

software used, I ask a series of directed questions tailored to the specific course.  For MATHS 159, 

I include calculation questions that are too “tough” to complete in the allotted time (15 – 20 

minutes), but all are easy to complete with software such as Excel.  The following questions also 

show up as examples in my first Excel lecture: 

 

1. For the integers n = 1, 2, 3, … 99, 100, find each of the following: 

a. n2 

b. n3 
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c. 4n3 + n2 -1 

d. 1 + 2 + … + n  (Note:  For n = 1, the sum is 1.  For n = 2, the sum is 1 + 2.) 

 

2. The data in the following table are the land area in Australia colonized by the American marine 

toad (Bufo marinis).  The first column is year and the second column is cumulative area occupied in 

km2.   

Year Area(km^2) 

1939 32800 

1944 55800 

1949 73600 

1954 138000 

1959 202000 

1964 257000 

1969 301000 

1974 584000 

 

 a. Plot this data with Year on the x-axis and Area on the y-axis. 

b. Find a function that can be used to predict this growth. 

c. Estimate when Australia will be overrun by the toads (Australia’s area is 7,619,000 km2). 

 

3.  Sort the following list of birthdays of famous mathematicians according to their 

a. Birth Year 

b. Name 

c. Birth Year followed by Name 

 

Birth Year Name Birth Year Name 

1584 Vernier 1840 Henrici 

1646 Flamsteed 1852 Le, P. 

1736 Bring 1900 Aiken 

1739 Klügel 1878 Bernstein, F. 

1939 Baker 1909 Black 

1852 Frattini 1920 Pillai 

1888 Courant 1946 Margulis 

1924 Cohn 1880 Bernstein, S. 

1942 Hawking 1796 Bienaymé 

1814 Wantzel 1801 Cournot 

1819 Adams 1867 Bôcher 

1883 Keynes 1883 Schouten 

1816 Wolf 1910 Turán 

1905 Dubreil-Jacotin 1910 Koopmans 

1906 Feller 1911 Kakutani 

1922 Marchenko 1939 Kingman 

1818 Joachimsthal   

 

6. Course Overview – Topics Covered 
The following is an outline of the topics covered in the version of MATHS 159 course that I taught 

in fall 2008, which is very close to the versions taught in both fall 2007 and fall 2009.  Topics are 

listed in the order presented, by lecture, with software specific concepts and commands interspersed 
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with mathematical examples and ideas.  This is done to show how the software and mathematics go 

hand-in-hand.  Since many of the students are concurrently enrolled in a first semester calculus 

course, MATHS 159’s calculus topics (limit, derivative, optimization, Riemann sum, and integral) 

are positioned in the course to “parallel” what students will be seeing in their calculus class. 

The order in which the software type is introduced is also important – Excel appears first 

since it is more likely that students entering the course will have encountered a spreadsheet program 

than the other two types of software.  Mathematica is the second topic for two reasons – first, the 

students will have encountered it in their calculus course by the time it is introduced in this course 

(approximately the sixth week of the semester) and second, Mathematica’s initial learning curve is 

steeper than Excel’s.  MATLAB is the least “user friendly” and requires an understanding of 

matrices, so it was chosen as the final software package to study.   

 

Topics in Excel 

 

Lecture 1:  Definitions and Terminology  

• Entering labels, constants, and formulas 

• Formatting cells (font, alignment, number) 

• Adjusting column width and row height 

• Fill down and fill right 

• Built-in functions AVERAGE and SUM 

• Fill Handle 

• Other cell basics (Merge and Center, Fill Color, Borders, Hyperlink) 

• Making a chart with the Chart Wizard (adding a trendline, F11 creates a chart automatically) 

• Importing data from a text file 

• Creating a formula 

• Page setup for printing 

• Sorting Data (Sort Smallest to Largest button, Sort menu, AutoFilter) 

 

Lecture 2:  Finance Applications with Excel – Simple and Compound Interest 

• Simple Interest 

• Compound Interest 

• Present Value 

• What-If Analysis (Scenario Manager and Goal Seek)  

 

Lecture 3:  Finance Applications with Excel – Annuities and Amortization 

• Sequence (Fibonacci, geometric) 

• Series  (partial sum, closed form) 

• Annuities as partial sums 

• Annuities (ordinary, annuities due) 

• Future Value of an Ordinary Annuity 

• Sinking Fund 

• Using Excel’s built-in functions to perform these calculations 

• Present Value of an Annuity 

• Mortgage, periodic payments 

• Amortization Schedule 

 

Lecture 4:  Logical Functions and Conditional Formatting in Excel 

• Logical Functions (TRUE, FALSE, NOT, AND, OR, IF, IFERROR)  

• Nested IF 

• LOOKUP 



 The Electronic Journal of Mathematics and Technology, Volume 4, Number 3, ISSN 1933-2823 

  

 

237 

 

• Conditional Formatting  

 

Lecture 5:  Mathematical Functions in Excel 

• Common Mathematical Functions (SQRT, ABS, EXP, LN, LOG10, POWER, ROUND, 

SIN, COS, TAN, CSC, SEC, COT, PI, RADIANS) 

• Best-Fit Lines (SUMPRODUCT, SLOPE, INTERCEPT) 

• Excel’s Trendline Feature (number of digits, exponential) 

• Rates of Change (average, instantaneous, tangent line, derivative) 

• Engineering Functions (BIN2DEC, HEX2DEC, CONVERTCOMPLEX, IMPRODUCT) 

• Excel Add-Ins 

 

Lecture 6:  Recurrence Relations in Excel 

• Recurrence Relation (factorial function, Fibonacci sequence, compound interest) 

• Initial Conditions and Order 

• Closed-form solutions (compound interest, Fibonacci sequence) 

• Exponential Function 

• Exponential Growth and Decay 

• Damped or Undamped Oscillation 

• Fixed Points and Stability 

 

Lecture 7:  Population Models in Excel 

• Finding a recurrence relation from a closed-form model (exponential growth for toad 

population data) 

• The Logistic Model 

• Using Excel to study growth rates with different carrying capacities and a fixed growth rate 

• Fixed points in the logistic model 

• Two or more populations (predator-prey, host-parasite, competitive hunter, arms race) 

• Predator-Prey (foxes and rabbits) in Excel – recurrence relations 

• Revised Predator-Prey Model which includes logistic growth 

 

Lecture 8:  The Excel Solver  

• Maximizing an area enclosed by a fence. 

• Minimizing least squares error in an approximating function (SUMXMY2) 

• Maximizing office storage space (simple linear programming, naming a range of cells) 

• Excel’s Solver Add-In 

 

Topics in Mathematica 

 

Lecture 9:  Basic Syntax and Basic Commands 

• Basic Syntax 

• Constants and Commands 

• Grouping Symbols (mathematical grouping, function syntax, list syntax) 

• Types of Equals Signs (=, ==, :=) 

• Calculator Commands (trigonometric functions, N) 

• Symbol Manipulation (Clear, Expand, Factor, Solve, Apart, Together) 

• Graphing Commands (Plot, ListPlot) 

• Defining Functions ([ ], Simplify, /;)  

 

Lecture 10:  Entering Text, Formatting, and Using the Help File 

• Entering Text and Formatting (changing text, palettes, shortcuts) 
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• Using the Help Browser (Plot3D example) 

 

Lecture 11:  Formatting and Working with Tables 

• Table Command (TableForm, GridBox, FrameBox) 

• Extracting or Working with Elements in Tables ([[ ]], Length) 

• Tables of Graphs 

 

 Lecture 12:  Calculus Commands 

• Finding a Limit (Limit) 

• Differentiating a Function (D, prime notation, higher-order derivatives) 

• Integrating a Function (Integrate, NIntegrate) 

• Evaluating Sums and Series (Sum) 

  

Lecture 13:  Parametric Curves and Surfaces; Animation 

• Parameterized Curves and Surfaces (ParametricPlot, ParametricPlot3D) 

• Real-Time 3D Graphics (rotating, zooming)  

• Animation (ListAnimate, Animate, Manipulate) 

 

Lecture 14:  Importing and Exporting Data 

• Import and Export (Head, $Path) 

• Filetypes (CSV, DAT, XLS, etc.) 

• Put and Get (FilePrint, PutAppend, Needs, Flatten) 

 

Lecture 15:  Optimization 

• FindMinimum and FindMaximum (local) 

• Minimize and Maximize (global) 

• Constraints 

• NMinimize and NMaximize 

• Replacement Operator (/.) 

 

Lecture 16:  Numerical Computation 

• FindRoot (Accuracy, WorkingPrecision, Chop) 

• NSolve (solving polynomial equation or system polynomial of equations) 

• NLimit vs. Limit 

• Nintegrate (Timing, MaxRecursion) 

 

Lecture 17:  Simple Programming  

• Definition of Computer Program 

• Logical Operators (And, Or, Not, Xor, Nor, Nand) 

• If (piecewise defined function, absolute value function example using If vs. /;) 

• Differentiating each version – which works better as a plot 

• Differentiating each version – which “works” 

• Which (piecewise defined function – more than two “pieces”, differentiating yields a 

function defined via Which) 

• Switch 

• Nest (recurrence relations) 

• Print (Hello World example, new line (\n)) 

• Do (sum of squares, including a Print statement, adding an If statement, Return[ ]) 

• For (local vs. global variables, Module, Continue[ ], Break[ ]) 

• While (Coin Toss example, RandomInteger, using And to ensure While loop stops) 
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• Newton’s Method Example (by “hand”, simple Do loop, Do loop with intermediate outputs 

printed via Print, For loop, maximum 50 steps, tolerance checked via If) 

 

Topics in MATLAB 

 

Lecture 18:  Systems of Equations  

• System of two equations in two unknowns 

• Review of substitution and elimination 

• Solving a System of Equations with Technology (calculator, Mathematica, Excel) 

• Using Excel’s Solver to solve a system of equations (2 x 2 case) 

• Using Mathematica’s Solve command to solve a system of equations (2 x 2 case) 

• General 2 x 2 system – what choices of coefficients are allowed? 

• Solving general 3 x 3 case (by hand, calculator, Mathematica, Excel, Other, when a  solution 

is guaranteed, Mathematica solution) 

 

Lecture 19:  Elementary Matrix Theory 

• Matrix definition and examples (row, column, vector,  

• Matrix Notation ([A]ij = aij, square matrix) 

• Arithmetic with Matrices (addition and subtraction, matrix multiplication, scalar 

multiplication) 

• Identities and Inverses 

• Review of Real Number Properties (additive identity, multiplicative identity, additive 

inverse, multiplicative inverse) 

• Matrix Properties (zero matrix, identity matrix, additive inverse) 

• Multiplicative Inverse (2 x 2 case, setting up algebraic system to solve to find inverse) 

• When is matrix A invertible? (determinant of a matrix, how to check if a matrix is invertible 

via determinant.) 

• Linear Systems of Equations Revisited (2 x 2 linear system in matrix form, solve via 

multiplication by multiplicative inverses.) 

 

Lecture 20:  Introduction to MATLAB 

• MATLAB Basics (Desktop, help, lookfor, doc, type, up – arrow, clc, Command History 

window) 

• Entering Matrices 

• The Colon Operator (pulling out parts of a matrix, concatenating matrices) 

• Matrix Operations (+, -, *, ^, ’,  .’, inv, \, / ) 

• Array Operations with matrices A and B, scalar k (k*A, A.*B, A./B, A.^B) 

• Special Matrices and Matrix Functions (eye, zeros, ones, det, clear, clear all) 

• Linear Systems of Equations with MATLAB (2 x 2) 

• Making a Table of Values for a Function 

• Creating an M-File 

• MATLAB’s Path and Running an M-File 

• The Plot Command (plot, title, xlabel, ylabel, grid, legend) 

• Multiple plots and piecewise-defined functions 

 

Lecture 21:  Numerical Differentiation and Integration in MATLAB; Function M-files 

• Numerical Differentiation (linspace, diff, graphical comparison via subplot) 

• Numerical Integration (Riemann sums via sum) 

• Function M-Files 
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Lecture 22:  Working with Data in MATLAB 

• Useful built-in commands for data manipulation (fzero, sum, min, max, length, mean, 

median, std, sort) 

• Finding minimum of a function on an interval (numerically, discretely, via fzero) 

• Represent a polynomial as a vector of coefficients (polyval, polyfit) 

• Fit a polynomial to a set of data via least squares 

• Importing data from text file into MATLAB via Import Wizard 

• Fit data with polynomial 

• Compare to Excel’s Trendline or Mathematica’s Fit command 

 

Lecture 23:  The Symbolic Toolbox 

• MATLAB’s built-in symbolic commands (syms, diff, int, simplify, pretty, subs, double, 

ezplot) 

• MATLAB’s function calculator (funtool) 

 

Lecture 24:  Programming in MATLAB Examples  

• Plotting Toad Data (toads1.m) (toads1.pdf)  

• Making a Loop  

• Working with Symbolic Functions  

• Newton’s Method 

• Competitive Hunters Model (cancan m-file), (hunter m-file) (ode45 m-file for Octave) 

(cancan.pdf) 

  

7. Sample Homework and Exam Questions 
Here are a few examples of the types of questions I asked students on their homework or exams, 

broken down by software package – for more examples, see [23]. 

 

Excel 

 

1. (Toads Revisited) Using the data from the Toads Example (from the survey above), create a 

table in Excel with a column for years and a column for area.  Use this table to make a 

scatter plot that includes a best-fit line, with the best-fit line labeled. 

a. Add a third, fourth, and fifth column to the toad data table.  Set up the third column 

to compute the area predicted by the Excel best-fit line.  Label this column “Excel 

Best-Fit Line”.  In the fourth column, find the difference between the actual area and 

the best-fit line’s predicted area.  Label this column “Error”.  In the fifth column, 

find the relative error, which is given by relative error = (actual value – best-fit line 

value)/(actual value).  Label this column “Relative Error”.  For columns that involve 

calculations, create a formula within Excel.   

b. How well do your best-fit line model values and resulting errors agree with what you 

see in the graphs? 

c. Repeat part (a) with the linear function y = 13568.1x -2.63405*10^7, which was 

found with Mathematica’s “Fit” command.  Label columns accordingly. 

d. Repeat part (b) with the linear function y = 13568.1x -2.63405*10^7. 

e. Which linear model is better – Excel’s or Mathematica’s?   

f. Why do you think one model is better than the other? 

g. Australia has a total area of 7,619,000 km^2.  Use the “better” best-fit line to help 

estimate graphically when Australia will be overrun by toads.  Hint:  Change features 

on your graph, such as horizontal or vertical axis scales via the Format Axis Menu or 

use the Forecast feature in the Trendline Options Menu. 

https://php.radford.edu/~ejmt/v4n3p3/toads1.m
https://php.radford.edu/~ejmt/v4n3p3/toads1.pdf
https://php.radford.edu/~ejmt/v4n3p3/cancan.m
https://php.radford.edu/~ejmt/v4n3p3/hunter.m
https://php.radford.edu/~ejmt/v4n3p3/ode45.m
https://php.radford.edu/~ejmt/v4n3p3/cancan.pdf
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h. Show how you obtained the estimate in part (g). 

i. Try different trendlines in Excel – do any other types of trendlines seem to “work 

better”?  Use the same sort of numerical estimates as you did for parts (a) and (c) 

above.  Plot the trendline you think fits the toad data the “best”.   

j. Use the trendline found in part (i) to estimate when Australia will be overrun by 

toads.   

k. Is this estimate reasonable – justify your answer. 

 

Source:  The toad data comes from a College Mathematics Journal article [6] in which 

actual toad data is used to illustrate modelling a population via exponential growth.  I 

chose this example because it involves a nice set of data that can be graphed with Excel, 

and then used to investigate fitting curves to data, which in turn can be used as models 

for population growth.  The added unexpected bonus is that Excel rounds the constants 

in the equation it prints for a curve fitted to data via the Trendline feature.  This rounding 

is significant enough (in this example) to cause a best-fit line equation that is clearly 

wrong graphically.  I have gotten a lot of mileage out of this set of data.  Other questions 

and examples related to the toad data include:  actually calculating the best-fit line slope 

and y-intercept several different ways (formulas, built-in Excel functions, minimizing 

the sum of the squares for error with Excel’s Solver); treating toad growth as a 

recurrence relation; and fitting the data to exponential, logistic, or polynomial models (in 

all three types of software). 

 

2. (Buying a House) You purchase the home of your dreams for $185,000 with 20% 

down.  The current mortgage rates are 6.375% for a 30-year fixed mortgage and 6.00% for a 

15-year fixed mortgage.  In addition to the 20% down payment, there are closing costs of 

$2436 for bank fees, surveying, appraisal, and taxes that must be paid up front at the time of 

the loan.  One way to do so is to add the closing costs to the loan amount. 

a. Create an amortization schedule for each loan, assuming the closing costs are paid 

out of pocket. 

b. How much total interest is paid for each loan? 

c. Add the closing costs to the loan amount and repeat part (a).  How much more do 

you pay for each loan (remember to include the closing costs in the loan costs in part 

(a))? 

d. If closing costs were paid out of pocket, as in part (a), how much sooner could you 

pay off each loan if you paid one extra payment per year by dividing the payment 

into twelve equal payments that are applied directly to the principal?  What would be 

the total interest for each loan in this case? 

e. Suppose you have taken out the loan for 15 years as in part (a), and at the end of the 

6th year, you need a new roof on your house, which will cost $9500.  At the time you 

need the roof, the current mortgage rates are 5.125% for a 15-year fixed loan (or any 

lesser amount of time).  Closing costs to refinance will be $3705.  Find and justify 

the best investment strategy from among the following, with the requirement that the 

house will still be paid off in 15 years total. 

i. Borrow the money for the roof by refinancing, i.e. adding the roof cost and 

closing costs to the principal and taking out a new mortgage on this amount. 

(The first mortgage is paid off in this process.) 

ii. Pay for the roof out of pocket and refinance, with closing costs added to the 

new loan amount. 

iii. Pay for the roof out of pocket and don’t refinance! 
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Source:  This is a “standard” amortization schedule problem that can be done in Excel, with 

a few “twists” that are based on my own experiences with owning a house.  At some point I 

needed to put on a new roof and had to decide whether or not it would be better to borrow 

money to pay for the roof by refinancing or to pay out of pocket.  This example also brings 

in the idea of closing costs, which may not always be addressed in amortization examples. 

 

Mathematica 

 

1. (Tangent Lines and Secant Lines) Choose a function y = f (x) defined on an interval [c,d] 

and use this function to illustrate graphically the idea of tangent line at the point (a,f(a)) as a 

limit involving secant lines.  Your example should include graphs that can be animated to 

illustrate the concept.  Label your graphs appropriately.  Also, your a – value should be 

easily changeable, i.e., make it a global variable.  Explain in words what is happening.  Here 

is an example with the function f(x) = x3+x-4 and a = 1 (TangentLineExample.nb) 

(TangentLineExample.pdf).  Choose a different function and a – value than those given 

in the example! 

 

 
 

Figure 1:  tangent line as limit of secant lines illustration via Mathematica’s Manipulate 

command, using f(x) = x3+x-4 and a = 1.  

 

Source:  This is a combination of the “standard” examples of looking at a tangent line as the 

limit of secant lines, finding the equation for a tangent line to the graph of a function at a 

point on the graph, and plotting both the function and the tangent line on the same graph.  

We have already seen how to do this in Excel with a fixed function, fixed a – value, and an 

estimate for derivative via a difference quotient calculation.  What makes this example nice 

is that it can be changed by redefining the function or a – value and a new graph will result, 

which can be changed dynamically (via the slider) to see how the secant lines approach the 

tangent line.  Mathematica’s Manipulate function is used to build in the animation to the 

plot. 

 

2. (Creating Piecewise Functions Revisited)  

a. Let f1[x]=x^(1/3).  Using Mathematica, find each of the following:  f1[1], f1[-1], 

f1’[x], f1’[1], and f1’[-1].  Then graph f1[x] and f1’[x] on the x-interval [-3,3].  What 

do you notice? 

h
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2
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f x

https://ejmt.mathandtech.org/Contents/v4n3p3/TangentLineExample.nb
https://ejmt.mathandtech.org/Contents/v4n3p3/TangentLineExample.pdf
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b. One way to fix the “problem” with the cube root function in Mathematica is to use a 

piecewise definition for the function.  Define f2[x] with the following commands: 

    f2[x_]:= x^(1/3) /; x > 0 

f2[x_]:= -(-x)^(1/3) /; x < 0 

   Repeat part (a).  Is there any improvement? 

c. Using commands such as If, Which, or Switch, create a cube root function r[x] that 

works the way the cube root is supposed to work, i.e. Mathematica can find  

r[1], r[-1], and plot both r[x] and r’[x] correctly. 

d. Repeat part (c) for f[x]=(Abs[x]-2)^(1/3).  You should get these graphs for y = f[x] 

and y = f’[x]: 

 
Figure 2:  graphs for part (d) 

 

Source:  In one of the class assignments on optimization (from [19]), critical numbers of the 

function f[x]=(Abs[x]-2)^(1/3) are investigated.  Since the function involves cube roots, one 

runs into one of Mathematica’s “bugs” – it treats all roots as complex and so when one 

computes the cube root of -1 with Mathematica, one gets the principal cube root   1/2 + 

i*3/2 instead of -1.  It is suggested in [19] to include the add-on package 

Miscellaneous`RealOnly` to fix this “problem”, but for versions 6.0 and higher of 

Mathematica, this package is obsolete.  My “calculus – level” solution to deal with this 

problem is to define the cube root function as a piecewise function for which cube roots of 

negative real numbers are computed correctly.  I made this problem up to investigate how to 

create a piecewise-defined function that correctly evaluates all numbers in its domain, can 

be plotted correctly on its domain, can be differentiated correctly symbolically, and whose 

derivative can be evaluated and plotted correctly as well. 

 

 

MATLAB and Linear Algebra Basics 

1. (Matrices in Excel) Given the matrices A =
















−

410

610

321

 and B =
















−

20

13

11

, use Excel for 

each of the following. 

a. Find AB. 

b. Find det(A). 

c. Find A-1. 

d. Show AA-1 =  A-1A = I. 

e. Solve AX = b, for b set equal to each column in B (Hint:  this can be done in one 

step). 

2. (Matrices in Mathematica) Repeat question 1 with Mathematica.  Can you find a way to 

make matrices look like matrices? 

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

x

f x

3 2 1 0 1 2 3
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0
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Source:  After looking at matrix basics, I want the class to understand the basics, see how to 

perform these calculations in Excel by “hand” or with built-in functions (MMULT and 

MINVERSE), and appreciate how well-suited MATLAB is for doing matrix calculations.  I 

got the idea for the Excel material from [35] as the result of an internet search on matrix 

operations in Excel.  The Mathematica questions are included so students can see how 

Mathematica uses lists for matrices, which is more cumbersome than arrays in Excel, but the 

commands to compute products and inverses are much better in Mathematica – thus there 

are tradeoffs for each type of software.  For example, MATLAB is better for matrix 

computations, but Mathematica is better at displaying the output in exact form. 

3. (Calculus with MATLAB – appears on an in-class exam)  Let g(x) = exp 







− 2

2

1
x .   

a. Find the actual derivative of this function, g’(x).  You may do this by hand if you 

wish. 

b. Find the numerical derivative of g(x) on the interval [-1, 1], using an x – vector that 

contains 1000 points and includes the endpoints -1 and 1.  Save the values of this 

numerical derivative as the vector gprime.  Make a table with two columns that 

compares the first ten values of gprime (column 1) with the first ten values of g’(x) 

(column 2).  The table does not need any headings! 

c. Use a Riemann sum to numerically estimate the definite integral −
1

1
dx  g(x) .  

Subdivide the interval [-1, 1] into 50 equal parts and choose the right endpoint of 

each subinterval as the sample point. 

 

Extra Credit:  Find the integral g(x)  dx,
k

k− with g(x) from problem 3 (c), symbolically.  

Then find the value of this integral if we replace k with infinity, two ways – first by 

letting k = 1, 10, 100, and 1000 and finding the integral’s value in each case as a 

numeric rather than symbolic value (hint – look up “double”) and second by finding the 

limit of the integral as k approaches infinity (hint – look up “inf” and “limit”). 

 

Source:  This problem illustrates some of the nice features of MATLAB for numerical 

differentiation as well as numerical integration via arrays of inputs and corresponding 

function values.  The concept of Riemann sum is emphasized – in MATLAB these are 

“easy” to compute.  In addition, the first part of this problem can be done symbolically 

within MATLAB with the Symbolic Toolbox (diff and int) or the Function Calculator.  

The idea for this problem comes from similar examples in [21]. 

 

8. Final Project Guidelines and Topics 

Part of a student’s course grade is based on a final project which includes a class presentation.  The 

class is broken into four groups, with each group responsible for one of four possible projects 

chosen by me, taken from [34], to be presented during the last class period and final exam period. 
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Project Title Topic Calculus Ideas Used Area of Application 

1 
Fitting Lines 

to Data 

Minimizing quadratic 

polynomials finds the 

regression line to a data set 

Derivatives to find 

local extrema, 

logarithm and 

exponential functions 

Statistics 

2 

Somewhere 

within the 

Rainbow 

Minimizing Trigonometric 

functions to explain 

properties of a rainbow 

Derivatives of 

trigonometric 

functions, finding 

maxima and minima 

Optics, Meteorology 

3 

Measuring 

Voting 

Power 

Integrals of polynomials give 

a measure of voting power 

Average value of a 

function, integration of 

polynomials, 

mathematical induction 

Political Science 

4 
How to Tune 

a Radio 

Trigonometric integrals 

explain tuning a radio 

Differentiation and 

integration of sines and 

cosines 

Signal Analysis 

Table 1:  projects for fall 2008 

 

Each project applies ideas from calculus to real-world problems or situations and can be 

investigated with the software tools studied in the course.  Each group’s responsibility is as follows: 

• Read and understand the material outlined in the project handout. 

• Answer all questions in the project handout’s exercises, using at least one type of software 

discussed in the course, as appropriate. 

• By no later than the beginning of the Final Exam period turn in a single set of solutions to 

the project handout’s exercises, with all work done as neatly and completely as possible.  

• Present the topic to the rest of the class (it is up to the group to determine how to do 

this).  The presentation should include a handout for the rest of the class summarizing the 

project topic (for example, the handout could include key ideas and examples).  The overall 

presentation should involve application of at least one type of software discussed in the 

course.  Each person in a group is expected to give a five – minute presentation on a portion 

of the material related to their group's project!  

 

9. Course Logistics 
Each time I’ve taught this course, it has met three times per week on MWF, with a double period on 

Wednesday to account for a one-hour lab.  The pilot version of the course in fall 2007 had twelve 

students, but since fall 2008 there have been 25 students enrolled in each section (course cap is 25 

students), with two sections running each semester.   I have found that reserving Fridays for lab 

days works best, with content taught on Mondays and Wednesdays.  In addition, Wednesdays are 

used for in-class exams, so students have 100 minutes to take an exam, vs. 50 minutes.  A student’s 

course grade is based on the total points earned out of 600 possible, from homework and labs (250 

points), three in-class exams (50 points each), class participation (100 points), and the final project 

(100 points).    

The way I teach the material is via an interactive lecture format in which a concept is 

introduced via PowerPoint or other appropriate electronic format, such as Mathematica notebooks.  

Throughout the lecture examples are set up and solved by each student on their own computer, with 

me guiding them through the solution using my laptop connected to an overhead projection system.  

Lectures and files for examples are posted on line before each class so students can follow along – 

either on their computer or the overhead screen.  I also use chalk/whiteboard to further illustrate 

ideas and answer questions. 
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 One issue that has to be dealt with is students being at different levels of technical 

proficiency, both with computers and the software.  To help with this, I have a graduate assistant 

(GA) assigned to the course.  The GA attends each class period, learns the material, and helps with 

student questions which are technical in nature, as well as mathematical when appropriate 

(especially in the lab portion of the course).  In addition to assisting in the class itself, the GA helps 

with grading of lab assignments.  Labs are assigned on a Friday, due the following Friday, and 

turned in and graded electronically.   This method saves paper and helps to keep track of which 

students have turned in their work, as well as the time it was turned in. 

 After completing material for each software package, I give an in-class exam with questions 

that require students to demonstrate mastery of the software at a basic level and use it to solve 

problems similar to those from lecture or lab assignments.  For each exam students are allowed one 

side of a 5” by 8” index card of personal notes.  The cards are turned in at the end of the exam.  In 

addition, they can use the help files within Excel, Mathematica, or MATLAB, but are not allowed to 

access other materials such as old homework or labs, class lectures, or class notes.  Most work and 

answers to questions on an exam can be done within the software, but some questions require a 

hand-written answer.  Once a student has completed their exam, they email me and my GA (as a 

backup) their files with answers to questions including supporting work, turn in their note cards, 

and exam copies with hand-written answers.  For grading of exams, I have found it works best to 

look at the student work within the electronic files and put comments and scores on the hard copies 

of the exam.   

 Any other work done by students, such as Final Projects or Group Projects, is turned in via 

email to me.  Since these projects are done by four groups per class, I print out and grade hard 

copies of a group’s submitted work.  The only exception to electronic submission of work has been 

three small homework assignments at the beginning of each software section that ask students to list 

ten things they learn from a tutorial about the software. 

 

10. Course Issues/Course Solutions  
Since the course is different than “traditional courses”, I have had to work out bugs as they arise – 

most of which can be classified as technological, logistical, software, or mathematical in nature. 

a. Technological issues are those related to using computers in general, such as not being able 

to log into a network to get to the class web page, not knowing where a file is saved, trouble 

with saving a file in a certain format, and not knowing how to email a file. 

b. Logistical issues are those related to running the course, such as finding ways to effectively 

collect, grade, and return student lab work and exams. 

c. Software issues are those that relate directly to specific course software, such as getting 

errors while trying to work out an example in class or on homework problem. 

d. Mathematical issues are those that relate to the course content, especially questions on labs 

and exams, such as being able to interpret a question, knowing how to start a question, 

figuring out how the question relates to the course lectures, and using the software to answer 

the question. 

 

“Solutions”:  For each issue that has arisen, I have tried to address it right away if possible, or for 

the next version of the course, as appropriate to the specific issue. 

a. Many of these issues occur only once and are unpredictable, but can usually be “fixed” 

immediately.  Having a GA in the class to assist with these types of questions as they arise 

has worked well. 

b. For the pilot version of the course, I tried using Blackboard for student submissions, with 

assignments due by the beginning of class.  This worked fine until the Mathematica 

section, as Blackboard did not recognize Mathematica notebook files.  After this, I had 

students turn in hard copies of their work, which was then graded and returned by hand.  
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For exams, students saved a copy of their exam to their COW laptop and emailed me a 

copy.  For subsequent versions of the course, I modified schemes implemented by Rich 

Stankewitz when he taught the course (using my notes) in spring 2008 for assignment and 

exam collection, grading, and distribution.  These are outlined above in Section 9:  Course 

Logistics.   

c. Most problems with the software boil down to entering incorrect syntax and are “easily” 

remedied once the syntax error is found.  I have noticed that as each software section (and 

semester overall) progresses, these errors occur less frequently – this tells me the course is 

“working” at least on the software level. 

d. Ignoring syntax issues, mathematical issues tend to arise from lab or exam questions that 

students do not understand or know how to interpret.  Since I am making up or getting the 

questions from various sources (all at the level of first semester calculus or below) and 

tailoring them to this course, the confusion can sometimes be due to a poorly worded or 

stated question.  With this in mind, I revise, rewrite, or throw out questions as needed and 

provide liberal hints in lab, office hours, and via email. 

 

11. Future Plans for the Course 
Overall, I feel that the course has been a success.  This is based on feedback from students both in 

person as well as on evaluations, comments from colleagues who have taught the course, student 

performance on exams, student pass rate (77% of my MATHS 159 students have earned a grade of 

C or higher, vs. 43% earning a grade of C or higher in my freshman calculus courses), departmental 

support for the course, and my perception of how students have matured both mathematically and 

with the software as the course has progressed – for example by the end of the course they are much 

more likely to use Mathematica to attack a problem (this is what most have chosen for their final 

projects).  Since MATHS 159 is in its infancy, no formal assessment of the course’s impact on other 

courses has been made – informal input from colleagues who teach courses that use the software 

suggest that some changes have occurred in student preparation for software use – in particular 

more students in our introductory statistics course report familiarity with Excel and our students in 

numerical analysis are more confident and fluent with MATLAB than in the past. 

 One issue that has arisen that is related to the mathematical issues above, as well as to the 

placement of the course in our curriculum is that a student’s perceptions of the course may depend 

on whether the student is freshman or upper class.  The general sentiment from students who took 

the course in fall 2007 was that the course was valuable to them, they learned a lot, and they wished 

it would have been offered earlier in their college career (this is the course with almost all upper 

class majors).  The main complaint for that year (which I get for many of my courses) was 

essentially that I gave too much work.  For the second version of the course in fall 2008, there were 

twice as many students, of which all but one were first – semester freshman.  Even though students 

did well in the course, the general feeling I got from the few comments on evaluations this time was 

that students did not see the value of the course to their major.  It will be interesting to see how 

students feel about the courses I taught in fall 2009, as there is a mix of about half freshman and 

half upper class students. 

 Another unexpected issue that has popped up is tied directly to departmental resources 

available to run the course – requiring all of our majors to take MATHS 159 as a freshman coupled 

with having to cap the course at 25 students per section to run an effective course and only being 

able to run two sections per semester has led to a potential “bottleneck” for students entering our 

program.  This is exacerbated by the fact that if a student is not successful in their first semester of 

calculus, they may change majors – these students are taking a spot in MATHS 159 that could be 

filled by a student who will actually complete a mathematics degree. 

 For this reason, our department has implemented curriculum revisions so that MATHS 159 

will be taken in a students’ sophomore year after taking a semester of calculus and a semester of 
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discrete mathematics.  Starting in fall 2010, this new version of the course will be offered as 

MATHS 259.  We are currently looking at what adjustments (if any) need to be made to the course 

to address its repositioning in our programs.  In addition to being able to offer the course to more of 

our majors, this move should also help with students’ perceived value of the course to their major.  

As the course progresses, in whatever form it takes, many more examples, homework problems, 

exam questions, and final projects will have to be created.  I look forward to the challenge of 

continuing to find ways to help increase students’ awareness of the usefulness of software for their 

mathematical careers!   

 

12. Supplemental Electronic Files 
 

Mathematica 

• Karls, M.  (2009). Tangent Line Example.  Mathematica notebook for illustrating the 

tangent line to a function at a point as a limit of secant lines through the point.  Requires 

Mathematica 6.0 or higher, [41].  (TangentLineExample.nb) 

 

MATLAB 

• Karls, M. (2010). Competitive Hunters Example.  MATLAB M-files for illustrating a 

competitive hunters model as well as the idea of calling a function M-file from within 

another M-file.  Requires MATLAB, [36].  (cancan m-file), (hunter m-file) 

• Karls, M. & Stankewitz, R. (2010). Plotting Toad Data.  MATLAB M-file for showing how 

to plot toad data along with approximating linear and exponential curves that fit the data.  

Requires MATLAB, [36].  (toads1.m) 

 

Octave 

• Karls, M. (2010). Competitive Hunters Example. Octave M-files for illustrating a 

competitive hunters model as well as the idea of calling a function M-file from within 

another M-file.  Requires Octave, [12], as well as Octave M-file ODE45.M, by T. Treichl, 

listed below.  (cancan m-file), (hunter m-file) 

• Karls, M. & Stankewitz, R. (2010). Plotting Toad Data. Octave M-file for showing how to 

plot toad data along with approximating linear and exponential curves that fit the data.  

Requires Octave, [12].  (toads1.m) 

• Treichl, T. (2009). ODE45.M. Octave M-file that mimics MATLAB M-file ODE45.M.  

This file is required in addition to CANCAN.M and HUNTER.M in order to run the 

Competitive Hunters Example with the Octave M-files CANCAN.M and HUNTER.M listed 

above.  Requires Octave, [12].  (ode45 m-file for Octave) 

 

PDF 

• Karls, M. (2009). Tangent Line Example. PDF version of Mathematica notebook 

TangentLineExample.nb. (TangentLineExample.pdf) 

• Karls, M. & Stankewitz, R. (2010). Plotting Toad Data. PDF version of MATLAB or Octave 

M-file toads1.m. (toads1.pdf) 

• Karls, M. & Treichel, T. (2010). Competetive Hunters Example.  PDF version of MATLAB 

or Octave m-files CANCAN.M, HUNTER.M, and ODE45.M. (cancan.pdf) 

 

 

 

 

 

https://ejmt.mathandtech.org/Contents/v4n3p3/TangentLineExample.nb
https://ejmt.mathandtech.org/Contents/v4n3p3/cancan.m
https://ejmt.mathandtech.org/Contents/v4n3p3/hunter.m
https://ejmt.mathandtech.org/Contents/v4n3p3/toads1.m
https://ejmt.mathandtech.org/Contents/v4n3p3/cancan.m
https://ejmt.mathandtech.org/Contents/v4n3p3/hunter.m
https://ejmt.mathandtech.org/Contents/v4n3p3/toads1.m
https://ejmt.mathandtech.org/Contents/v4n3p3/ode45.m
https://ejmt.mathandtech.org/Contents/v4n3p3/TangentLineExample.pdf
https://ejmt.mathandtech.org/Contents/v4n3p3/toads1.pdf
https://ejmt.mathandtech.org/Contents/v4n3p3/cancan.pdf
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