
 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

Computing Multiple Integrals by MATLAB

Shengxiang Xia
1

e-mail: summer_5069@yahoo.com.cn

College of Science, Shandong Jianzhu University,

 Jinan 250101, China

Abstract.

 In this short note, two MATLAB procedures are presented that can be used to automatically

evaluate double and triple integrals on irregular regions.

1. Introduction

Since we can not analytically integrate every function, the need for approximate integration

formulas is obvious. In addition, there might be situations where the given function can be

integrated analytically, and yet an approximation formula may end up being a more efficient

alternative to evaluating the exact value of the integral. The MATLAB function quad is available

to perform approximate single integrations. MATLAB has a command dblquad which can be

used to automatically evaluate a double integral over a rectangular region. If the integration

region D is not rectangular, but is vertically or horizontally simple, then a number of options may

be carried out:

(1) A change of variables may be used to transform D into a square region R. Then dblquad

is used on R.

(2) If the inner integration can be calculated by hand, then the problem can be reduced to a

single integral, the MATLAB function quad is available to perform approximate single

integrations.

(3) A integrand function f(x, y) can be defined on a rectangular region R⊇D (containing the

actual integration region D) in such away that f(x, y) = 0 for (x, y) D; that is, the value of the

function becomes zero outside the integration region D, which may result in more computations.

Then dblquad is used over the region R.

MATLAB has a built-in triple integrator triplequad which can be used to automatically

evaluate a triple integral over a cubic region, it can be used on an irregular region in a similar

way as in (3), the other real option is to reduce the triple integral to a single integration and a

double integral, then the methods of above are used. Using whatever methods to evaluate

multiple integrals is very difficult by hand, unless the region and the integrand function are very

simple.

In this paper, we provide two MATLAB procedures that can be used to automatically

evaluate double and triple integrals over irregular integration regions, when the multiple integral

is written as the iterated integrals. As each iterated integral is based on a composite Gaussian

quadrature, we first review Gaussian Quadratures.

1
 * Supported by NSF of China (No. 51078225)

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

160

2. Gaussian Quadrature

Consider an ordinary quadrature rule with n points

1 2, ,..., nx x x and weights
1 2, ,...,w w

nw :

1

() ()
nb

i i
a

i

f x dx w f x




What is the maximal possible degree of precision? (k degree of precision means that the rule is

exact on all polynomials of degree at most k). For any number of points, an upper bound is

provided in [1]: the degree of precision of an n-point rule is less than 2n. We shall show that the

maximum possible degree of precision 2n-1 is achieved by a unique n-point rule. Without loss of

generality, we may restrict to the interval [a, b] = [-1, 1]. Our chief tool will be the Legendre

polynomials ()nP x . Recall that deg Pn = n and Pn is 2([1,1])L  - orthogonal to 1n (where n

denotes the space of polynomials of degree  n). Let 1 2 ... nx x x   denote the roots of Pn,

which we know to be distinct and to belong to [-1, 1]. These are called the n Gauss points on [-1,

1]. We define a quadrature rule by
1 1

1 1
() ()nf x dx I f x dx

 
  , where 1()n nI f x  is the Lagrange

interpolant to ()f x at the n Gauss points. This is a standard interpolatory quadrature rule:

1 1

1 1
1 1,

() (),
nn

j

n i i i

i j j i i j

x x
I f x w f x w dx

x x 
  


 


   .

This rule is called the n-point Gauss rule (Gauss-Legendre integration formula).

Theorem 2. 1 [1]. The n-point Gauss rule has degree of precision equal to 2n-1.

The constants iw and the roots ix of the Legendre polynomials have been extensively tabulated.

Table 2.1[1] lists these values for n=2, 3, 4, and 5.

An integral ()
b

a
f x dx over an arbitrary [a, b] can be transformed into an integral over [-1,

1] by using the change of variable:

2 2

b a b a
x t

 
  . (1)

Hence

()

b

a
f x dx =

1

12 2 2

b a b a b a
f t dt



   
 

 
 . (2)

This allows the n-point Gauss rule to be applied on any interval [a, b]. The composite n-point

Gauss rule requires that for a positive integer m, subdivide the interval [a, b] into m subintervals,

and then apply the n-point Gauss rule to each subinterval.

 Note: We apply traditional techniques using either vertical or horizontal partitions (dx or dy

respectively) to calculate a definite integral.

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

161

 Table 2.1 node points and weights

n xk wk

2 3

3
 ,

3

3

1, 1

3 1
15

5
 , 0,

1
15

5

5

9
,

8

9
,
5

9

4 1
525 70 30

35
  ,

1
525 70 30

35
 

1
525 70 30

35


1
525 70 30

35


1 1
30

36 2
 

1 1
30

36 2


1 1
30

36 2


1 1
30

36 2
 

5 -0.90617984593866 -

0.53846931010568 0

0.53846931010568

0.90617984593866

0.23692688505618

0.47862867049937

0.56888888888889

0.47862867049937

0.23692688505618

3. Double integral

In this section, we consider the numerical integration of a function (,)f x y with respect to two

variables x and y over the integration region {(,) | , () ()}D x y a x b c x y d x     . The double

integral quadratures in this paper are used when Fubini’s theorem is valid so a double integral is

expressible in terms of iterated integrals.

(,)
D

S f x y dxdy  =
()

()
(,)

b d x

a c x
dx f x y dy  . (3)

There are different ways to approximate (3) (see [2, 3, 4]). In this note, the numerical formula for

this double integration over a two-dimensional region takes the form

,

1 1

(, , (), ()) (,)
m n

i j i i j

i j

S a b c x d x w v f x y
 

  . (4)

Here the weights ,i jw v depend on the method of one-dimensional integration we choose.

We introduce a double integration routine “gaussdbl (fun, a, b, c, d, tol)” which uses the

composite 5-point Gauss rule for both integrations and calls another routine “gauss2int”. The

details are given in the routine gaussdbl. The left/right boundary a/b of integration region given as

the second/third input argument must be a number, while the lower/upper boundary c/d of

integration region given as the fourth/fifth input argument may be either a number or a function of

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

162

x. The sixth input argument tol is an absolute error tolerance, the default value is 10
-5

. The program

terminates when abs(gauss2int(fun, a, b, c, d, 2M, 2N)- gauss2int(fun, a, b, c, d, M, N))<tol, where

M/N is a positive integer, it is the number of subintervals of [a, b]/[c, d].

function ss=gaussdbl(fun, a, b, c, d, tol)

if nargin==5

 tol=1.0e-5;

end

M=2; N=2;

Smn=gauss2int(fun, a, b, c, d, 1, 1);

S2mn=gauss2int(fun, a, b, c, d, M, N);

k=1;

while abs(Smn-S2mn)>=tol & k<9

 Smn=S2mn;

 M=2*M;

 N=2*N;

 k=k+1;

 S2mn=gauss2int(fun, a, b, c, d, M, N);

end

ss=S2mn;

function ss=gauss2int(fun, a, b, c, d, M, N)

t=[-0.90617984593866, -0.53846931010568, 0, 0.53846931010568, 0.90617984593866];

A=[0.23692688505618, 0.47862867049937, 0.56888888888889, 0.47862867049937,

0.23692688505618];

hx=(b-a)/M;

for k=1:M+1;

x(k)=a+(k-1)*hx;

end

ss=0;

for k=1:M

 stt(1:5)=0;

 for j=1:5

 tt(j)=((x(k+1)-x(k))*t(j)+x(k+1)+x(k))/2;

 if isnumeric(c)

 ct(j)=c;

 else

 ct(j)=feval(c, tt(j)); % in case c is given as a function of x

 end

 if isnumeric(d)

 dt(j)=d;

 else

 dt(j)=feval(d, tt(j));

 end

 stt(j)=gaussfy(fun, tt(j), ct(j), dt(j), N);

 end

 ss=ss+sum(A.*stt)*(x(k+1)-x(k))/2;

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

163

 end

function s=gaussfy(fun, x, c, d, N)

% use the composite 5-point Gauss rule for fun over [c, d]

s=0;

for k=1:N+1

 h=(d-c)/N;

 c1(k)=c+h*(k-1);

end

for k=1:N

 s=s+glegend(fun, x, c1(k), c1(k+1));

 end

function I=glegend(fun, x, c, d)

% use the 5-point Gauss rule for fun over [c, d]

if nargin==2

 c=-1; d=1;

end

t=[-0.90617984593866, -0.53846931010568, 0, 0.53846931010568, 0.90617984593866];

A=[0.23692688505618, 0.47862867049937, 0.56888888888889, 0.47862867049937,

0.23692688505618];

for k=1:5

y(k)=((d-c)*t(k)+c+d)/2;

fy(k)=feval(fun, x, y(k));

s1=fy(k);

 if s1==-inf

 s1=-realmax;

 end

 if s1==inf

 s1=realmax;

 end

end

I=A*fy'*(d-c)/2;

Example 1 Use routine gaussdbl to approximate
2 2()cos

D
S y sin x+ y xdxdy  , for the region D in

the plane described by / 2 / 2, x y         .

Solution: The exact value of S is
32

3 3

 
 . We calculate S by gaussdbl, we get S =

19.62365356938493 and error = 3.81650e-10.

Remarks. (a) We compare gauss2int (or gaussdbl) with MATLAB program dblquad and

TwoD[4]. gauss2int used 1400 evaluations to compute S to obtain a result in error by 103.85 10 .

With 10(144) evaluations of the integrand, TwoD computed an approximation with error
91.67 10 and dblquad used 1574 evaluations to obtain a result in error by 71.1 10 .

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

164

(b) For
2 ()

0.1

0 0
()

d x

I xy dydx   , with

2 3

3 2() 3 1 ()
2

x
d x

 
  

 
(see [4]). gauss2int used 89375

evaluations to calculate I in error by 48.72 10 , with 190(144) evaluations of the integrand,

TwoD compute an approximation with error 42.29 10 . We see that approximations of I computed

by gauss2int and TwoD are very close.

(c) For the families (2), (3) in [4], with same tolerance, we compare gaussdbl with MATLAB

program dblquad and TwoD [4], and we find that approximations computed by gaussdbl and TwoD

are very close, gaussdbl and TwoD appear to be more efficient than dblquad.

(d) For the families (2) in [4], with same tolerance, we use gaussdbl, TwoD and dblquad to

compute 500 integrals, gaussdbl took 11.20s, dblquad took 14.17s, and TwoD took 2.56s. For the

families (3) in [4], gauss2int used 93600 evaluations to compute 20 integrals, which took 19.49s,

dblquad used 451718 evaluations, which took 43.48s, and TwoD used 10902 evaluations , which

took 7.61s, and all approximations computed by gauss2int, dblquad and TwoD are almost same.

By above (a), (b), (c) and (d), we see that gauss2int (gaussdbl) appears to be more efficient

than dblquad and TwoD appears to be more efficient than gauss2int.

Example 2 Use routine gaussdbl to approximate
2 2D

x y
S dxdy

x y




 , for the region D in the plane

described by 2 2 1x y  and 1x y  .

Solution: The integral region D is shown shaded in Figure 1. The integration region D is written

as the iterated integral
2 2D

x y
S dxdy

x y





21 1

2 20 1

x

x

x y
dx dy

x y








  , it is also expressible as

1 1
2 2

1 120 0
sin cos sin cos

(sin cos)
(sin cos)

r
S d rdr d dr

r

 

   

 
   

 

 
   

 
    . It is easily to show that

2
2

S


  .

 Figure 1 the integral region D

We constructed a MATLAB program “exa2” in order to use the routines gaussdbl, TwoD and

dblquad for computing S.

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

165

function exa2

c_x=@(theta)1./(sin(theta)+cos(theta));

fun2=@(theta, r)sin(theta)+cos(theta);

tic

SS1=gaussdbl(fun2, 0, pi/2, c_x, 1)

toc

err1=SS1-(2-pi/2)

tic

SS2=TwoD(fun2, 0, pi/2, c_x, 1)

toc

err2=SS2-(2-pi/2)

tic

SS3=dblquad(@fexa2,0, pi/2, 0, 1)

toc

err3=SS3-(2-pi/2)

 function v=fexa2(theta, r)

% Set fexa2(theta, r)=0 outside region.

v=(sin(theta)+cos(theta)).*(r>=1./(sin(theta)+cos(theta)));

end

end

 We run the program “exa2.m” to get the following results.

>> exa2

SS1 = 0.429203673205172

Elapsed time is 0.006496 seconds.

err1 = 6.89e-014

SS2 = 0.429203673205103

Elapsed time is 0.006716 seconds.

err2 = -1.11e-016

SS3 = 0.429200625654125

Elapsed time is 0.201904 seconds.

err3 = -3.05e-006

Example 3 Use routine gaussdbl to approximate the volume of the solid  bounded by the plane

2z x  and the surface 2 2 4z x y   as displayed in Figure 2.

Solution: The integral region D is determined by the circle
2 21 9

()
2 4

x y   , that is

2

21 9
{(,) | }

2 4
D x y x y

 
    

 
= 2 2{(,) | 2 2 , 1 2}x y x x y x x x          . Thus the

volume of the solid 

 2 24 (2) d
D

V x y x S     
   

2

2

2 2
2 2

1 2
4 (2)

x x

x x
dx x y x dy

 

   

     
   .

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

166

We know that the exact value of V is
81

32
 . We constructed a MATLAB program “exa3” in order

to use the routines gaussdbl, TwoD and dblquad for computing V.

 Figure 2 the solid 

function exa3

x=[-1:0.05:2];

y=[-3/2:0.05:3/2];

[X, Y]=meshgrid(x, y);

exa3_f1=inline('4-x.^2-y.^2', 'x', 'y');

exa3_f2=inline('2-x', 'x', 'y');

exa3_fun=@(x, y)2-x.^2-y.^2+x;

Z1=exa3_f1(X, Y);

Z2=exa3_f2(X, Y);

mesh(X, Y, Z1);

hold on;

mesh(X, Y, Z2);

hold off

c_x=@(x)-sqrt(2-x.^2+x);

d_x=@(x)sqrt(2-x.^2+x);

tic

V1=gaussdbl(exa3_fun, -1, 2, c_x, d_x)

toc

err1=81/32*pi-V1

tic

V2=TwoD(exa3_fun, -1, 2, c_x, d_x)

toc

err2=81/32*pi-V2

tic

-1

0

1

2

-2

-1

0

1

2
-4

-2

0

2

4

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

167

V3=dblquad(@fexa3, -1, 2, -2,2)

toc

err3=81/32*pi-V3

function v=fexa3(x, y)

% Set fexa3(x, y)=0 outside region.

v=(2-x.^2-y.^2+x).*(-sqrt(2-x.^2+x)<=y).*(y<=sqrt(2-x.^2+x));

end

end

 We run the program “exa3.m” to get the following results.

>> exa3

V1 = 7.952155747734767

Elapsed time is 0.598901 seconds.

err1 = 6.5666e-007

V2 = 7.952156282679086

Elapsed time is 0.032663 seconds.

err2 = 1.2172e-007

V3 = 7.952162828115892

Elapsed time is 0.274504 seconds.

err3 = -6.4237e-006

4. Triple integral

Suppose that a triple integral can be written as the iterated integral (, ,)V f x y z dxdydz


 
2 2

1 1

() (,)

() (,)
(, ,)

b y x z x y

a y x z x y
dx dy f x y z dz    , and let

2

1

(,)

(,)
(,) (, ,)

z x y

z x y
g x y f x y z dz  ,

2

1

()

()
() (,)

y x

y x
h x g x y dy  ,

()
b

a
V h x dx  . We introduce a triple integration routine gausscub(fun, a1, a2, b1, b2, c1, c2, tol)

that calls another routine “gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3)” which uses the

composite 5-point Gauss rule for each integral. The computational steps are as follows.

(1) Subdivide the interval [a, b] into N1 subintervals, apply the 5-point Gauss rule to each

subinterval 1[,]k kx x  , and apply the composite 5-point Gauss rule for ()h x over [,]a b , which calls

another routine “gaussfx2()” for computing ()kh x (see (2)).

(2) For fixed kx , subdivide the interval 1 2[(), ()]k ky x y x into N2 subintervals, apply the 5-point

Gauss rule to each subinterval, and apply the composite 5-point Gauss rule for (,)kg x y over

1 2[(), ()]k ky x y x to get ()kh x , which calls another routine “gaussfx3()” for computing (,)k jg x y

(see (3)).

(3) For fixed ,k jx y subdivide the interval 1 2[(,), (,)]k j k jz x y z x y into N3 subintervals, apply

the 5-point Gauss rule to each subinterval, and apply the composite 5-point Gauss rule for

(, ,)k jf x y z over 1 2[(,), (,)]k j k jz x y z x y to get (,)k jg x y .

The details are given in the routine gausscub(fun, a1, a2, b1, b2, c1, c2, tol). The front/back

boundary a1/a2 of variable x of integration region given as the second/third input argument must

be a number, the left/right boundary b1/b2 of variable y of integration region given as the

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

168

fourth/fifth input argument may be either a number or a function of x , while the lower/upper

boundary c1/c2 of variable z of integration region given as the sixth/seventh input argument may

be either a number or a function of ,x y . The eighth input argument tol is an absolute error

tolerance, the default value is 10
-5

. The program terminates when abs(gauss3int(fun, a1, a2, b1,

b2, c1, c2, 2*N1, 2*N2, 2*N3)- gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3))<tol, where

N1/N2 /N3 is a positive integer, it is the number of subintervals of [a1, a2]/ [b1, b2]/ [c1, c2].

function vv=gausscub(fun, a1, a2, b1, b2, c1, c2, tol)

if nargin==7

 tol=1.0e-5;

end

M=2;

Vmn=gauss3int(fun, a1, a2, b1, b2, c1, c2, 1, 1, 1)

V2mn=gauss3int(fun, a1, a2, b1, b2, c1, c2, M, M, M)

k=1;

while abs(Vmn-V2mn)>=tol & k<10

 Vmn=V2mn;

 M=2*M;

 k=k+1;

 V2mn=gauss3int(fun, a1, a2, b1, b2, c1, c2, M, M, M)

end

vv=V2mn;

function ss=gauss3int(fun, a1, a2, b1, b2, c1, c2, N1, N2, N3)

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866];

A=[0.23692688505618 0.47862867049937 0.56888888888889 0.47862867049937

0.23692688505618];

hx1=(a2-a1)/N1;

for k=1:N1+1;

x1(k)=a1+(k-1)*hx1;

end

ss=0;

for k=1:N1

 for j=1:5

 ta(j)=((x1(k+1)-x1(k))*t(j)+x1(k+1)+x1(k))/2;

 sta(j)=gaussfx2(fun, ta(j), b1, b2, c1, c2, N2, N3);

 end

 ss=ss+sum(A.*sta)*hx1/2;

 end

function ss=gaussfx2(fun, x1, b1, b2, c1, c2, N2, N3)

% use the composite 5-point Gauss rule for fun over [b1, b2]

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866];

A=[0.23692688505618 0.47862867049937 0.56888888888889 0.47862867049937

0.23692688505618];

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

169

if isnumeric(b1)

 by1=b1;

 else

 by1=feval(b1, x1); % in case b1 is given as a function of x

 end

 if isnumeric(b2)

 by2=b2;

 else

 by2=feval(b2, x1); % in case b2 is given as a function of x

 end

hx2=(by2-by1)/N2;

for k=1:N2+1;

 x2(k)=by1+(k-1)*hx2;

end

ss=0;

for k=1:N2

 for j=1:5

 tb(j)=((x2(k+1)-x2(k))*t(j)+x2(k+1)+x2(k))/2;

 stb(j)=gaussfx3(fun, x1, tb(j), c1, c2, N3);

 end

 ss=ss+sum(A.*stb)*hx2/2;

 end

function s=gaussfx3(fun, x1, x2, c1, c2, N)

% use the composite 5-point Gauss rule for fun over [c1, c2]

t=[-0.90617984593866 -0.53846931010568 0 0.53846931010568 0.90617984593866];

A=[0.23692688505618 0.47862867049937 0.56888888888889 0.47862867049937

0.23692688505618];

 if isnumeric(c1)

 cz1=c1;

 else

 cz1=feval(c1, x1, x2); % in case b1 is given as a function of x, y

 end

 if isnumeric(c2)

 cz2=c2;

 else

 cz2=feval(c2, x1, x2); % in case b2 is given as a function of x, y

 end

 h=(cz2-cz1)/N;

 s=0;

 for k=1:N+1

 cc1(k)=cz1+h*(k-1);

 end

 for k=1:N

 for j=1:5

 x3(j)=((cc1(k+1)-cc1(k))*t(j)+cc1(k+1)+cc1(k))/2;

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

170

 fx3(j)=feval(fun, x1, x2, x3(j));

 s1=fx3(j);

 if s1==-inf

 s1=-realmax;

 end

 if s1==inf

 s1=realmax;

 end

 fx3(j)=s1;

 end

 s=s+A*(fx3)'*h/2;

end

We discuss the performance of gausscub and triplequad on a family of

1 1 1

1 1 1 2 2 3 3 3 2 1
0 0 0

cos(2)x x x dx dx dx        . (5)

Each problem is constructed as follows: First
1 is picked randomly from [0, 1] . The parameters

1 2,   and
3 are picked randomly from [0, 1] and then scaled so that 1 2 3 15     . For the

family (5), gausscub used 1137500 evaluations of the integrand to compute the 100 integrals which

took 19.47s, and triplequad used 801422 evaluations, which took 93.22s. We compare the

approximations computed by gausscub and triplequad with the approximations computed by

MATLAB function “int” for the 100 integrals, and find that gausscub appears to be notably more

efficient than triplquad.

Example 4 Use routine gausscub to approximate the triple integral

(2)sinV x z ydv


  = 4

0 0 0
(2)sin

y y z

dy dz x z ydx




   .

Solution: The order of iterated integral is y z x  , for using routines gausscub and triplequad,

the integrand and the bound functions of the integral should be defined in this order (see the

following MATLAB program “exa4”). The exact value of V is

3 217 17 17 17
2 2 2 2

8 2 768 64
     .

function exa4

b2=inline('y', 'y');

c2=inline('y+z ', 'y ', 'z ');

exam_4=inline('(x+2*z)*sin(y)', 'y', 'z', 'x ');

VV=(17*sqrt(2)*pi/8-17*sqrt(2)/2-17*sqrt(2)*pi^3/768+17*sqrt(2)*pi^2/64);

tic

V1=gausscub(exam_4, 0, pi/4, 0, b2, 0, c2)

toc

err1=VV-V1

tic

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

171

V2=triplequad(@fexa4, 0, pi/4, 0, pi/4, 0, pi/2)

toc

err2=VV-V2

function v=fexa4(y, z, x)

% Set fexa4(x, y, z)=0 outside region.

v=(x+2*z).*sin(y).*(z<=y).*(x<=(y+z));

end

end

We run the program “exa4.m” to get the following results.

>> exa4

V1 = 0.157205682755273

Elapsed time is 6.960517 seconds.

err1 = 2.914e-015

V2 = 0.157214226369327

Elapsed time is 1.141406 seconds.

err2 = -8.5436e-006

We see that the degree of approximation of the result evaluated by the routine gausscub is very

high, and gausscub appears to be more efficient than triplequad.

Example 5 Find the triple iterated integral
2 2 2

1

0 0 0
3 (() 10 () 3 () 4 () ())xy zze cos xy cos xy xy xysin xV dy cos xy x y sin x zdydy x

 
        .

Solution: We constructed a MATLAB program “exa5” in order to use the routines gausscub and

triplequad for computing V.

function exa5

s=1.2712461501573769451057243381669; % the value computed by Matlab function int

fevals=0;

tic

s1=gausscub(@fun1, 0, 1, 0, pi, 0, pi)

toc

err1=s1-s

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n'])

fevals=0;

tic

s2=triplequad(@fun1, 0, 1, 0, pi, 0, pi)

toc

err2=s2-s

fprintf(['This cost ',num2str(fevals),' evaluations of f. \n'])

 function v=fun1(x, y, z)

% Set fun1(x,y,z)=0 outside region.

fevals=fevals+1;

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

172

v=-3.*z.*exp(-x.*y-z.^2).*(cos(x.*y)-10.*cos(x.*y).*x.*y+3*x.^2.*sin(x.*y).*y.^2

+4.*cos(x.*y).*x.^2.*y^2-sin(x.*y));

end

end

We run the program “exa5.m” to get the following results.

 >> exa5

s1= 1.271246152898202

Elapsed time is 0.19 seconds.

err1 = 2.7408e-009

This cost 11375 evaluations of f.

s2= 1.271246466089101

Elapsed time is 1.8 seconds.

err2 = 3.16e-007

This cost 15692 evaluations of f.

Example 6 Use gausscub and triplequad to approximate xyzdxdydz


 , here  is the region in

the first octant bounded by the cylinder 2 2 4x y  , the sphere 2 2 2 4x y z   , and the plane

8x y z   as displayed in Figure 3.

Figure 3 the region 

Solution: We rewrite the above triple integral as the iterated integral.
2

2 2

2 4 8

0 0 4

x x y

x y
V xyzdxdydz dx dy xyzdz

  

 


     .

We constructed a MATLAB program “exa6” in order to use the routine gausscub and triplequad for

computing V .

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

173

function exa6

v=20.34426877; % the value computed by the maple function int

cxy=inline('8-x-y', 'x', 'y');

dxy=inline('sqrt(4-x^2-y^2)', 'x', 'y');

bx=inline('sqrt(4-x^2)', 'x');

fevals=0;

tic

v1=gausscub(@fexa6, 0, 2, 0, bx, dxy, cxy, 0.01)

err1=v1-v

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n'])

toc

fevals=0;

tic

v2=triplequad(@fun1, 0, 2, 0, 2, 0, 8, 0.00001)

err2=v2-v

fprintf(['This cost ', num2str(fevals),' evaluations of f. \n'])

toc

function w=fexa6(x, y, z)

fevals=fevals+1;

w=sqrt(x*y*z);

end

function w=fun1(x, y, z)

% Set fun1(x, y, z)=0 outside region.

fevals=fevals+1;

w=sqrt(x*y*z).*(y<=sqrt(4-x.^2)).*(z>=sqrt(4-x.^2-y.^2)).*(z<=(8-x-y));

end

end

 We run the program “exa6.m” to get the following results.

>> exa6

v1=20.352902524600498

err1=0.008633754600499

This cost 11375 evaluations of f.

Elapsed time is 1.049463 seconds.

v2=20.312806858385787

err2= -0.031461911614212

This cost 209684 evaluations of f.

Elapsed time is 25.553564 seconds.

5. Conclusion

The two MATLAB procedures gaussdbl and gausscub introduced in this paper can be used to

automatically evaluate double and triple integrals respectively on irregular regions, which can be

taught as basic algorithms in, for example, a numerical integration course. The performances of

 The Electronic Journal of Mathematics and Technology, Volume 6, Number 2, ISSN 1933-2823

174

gausscub and triplequad (gaussdbl, TwoD and dblquad) are discussed on several examples, and it is

shown that the gaussdbl and gausscub are effective and capable programs for approximating

numerically double and triple integrals. Although gausscub appears to be more efficient than

triplequad for many examples, yet the degrees of accuracy of approximations computed by

gausscub are very poor for some complicated integrals, especially for integrands with peaks. We

need to develop more efficient algorithms for triple integrals.

Acknowledgement. The author is very grateful to the referees for valuable comments and

corrections.

References
[1] Richard L. Burden，J. Douglas Faires. Numerical Analysis (Seventh Edition). Brooks/ Cole

Thomson, Pacific Grove, CA, 2001.

[2] F.N. Fritsch, D.K. Kahaner, and J.N. Lyness, Double integration using one-dimensional

adaptive quadrature routines: a software interface problem, ACM Trans. Math. Software, 7

(1981) 46-75.

[3] J. Lyness, When not to use an automatic quadrature routine, SIAM Review, 25 (1983) 63-87.

[4] L.F. Shampine, Matlab Program for Quadrature in 2D, Appl. Math. Comp., 202 (2008) 266-274.

