Problem Corner Provided by Vladimir SHELOMOVSKIY <u>vvsss@rambler.ru</u>

Russia

Thinking Skills and Technology

Question 1 Solve the inequality $f(x, y, z) = 2x - 3y - 2z - 11 + 5\sqrt{x^2 + y^2 + 11 + 4z^2} \le 0$. Use CAS, if it is convenient.

Question 2 Let $f(x, y, a) = 1 - \sqrt{x^2 - 2ax + y^2 - 4y + 5}$. The expression gets its maximum value only for a single pair (x, y). Find the range of the parameter $a \in [-1, 1]$.

Question 3 Let N be the Nagel point of triangle *ABC*. Let T_A , T_B , and T_C be the extouch points at which the *A*-excircle meets line *BC*, the *B*-excircle meets line *CA*, and *C*-excircle meets line *AB*, respectively. Let P_A be a point on AT_A such that $AP_A = NT_A$. Let P_B be a point on BT_B such that $BP_B = NT_B$. Let P_C be a point on CT_C such that $CP_C = NT_C$. Find the incenter of $P_A P_B P_C$ triangle.

Note: "Nagel point" from Wikipedia:

In geometry, the Nagel point is a point associated with any triangle. Given a triangle ABC, let TA, TB, and TC be the extouch points in which the A-excircle meets line BC, the B-excircle meets line CA, and C-excircle meets line AB, respectively. The lines ATA, BTB, CTC concur in the Nagel point N of triangle ABC. The Nagel point is named after Christian Heinrich von Nagel, a nineteenth century German mathematician, who wrote about it in 1836.