Problem Corner
 Provided by Vladimir SHELOMOVSKIY

vvsss@rambler.ru
Russia

Thinking Skills and Technology

Question 1 Solve the inequality $f(x, y, z)=2 \mathrm{x}-3 \mathrm{y}-2 \mathrm{z}-11+5 \sqrt{x^{2}+y^{2}+11+4 z^{2}} \leq 0$. Use CAS, if it is convenient.

Question 2 Let $f(x, y, a)=1-\sqrt{x^{2}-2 a x+y^{2}-4 y+5}$. The expression gets its maximum value only for a single pair (x, y). Find the range of the parameter $a \in[-1,1]$.

Question 3 Let N be the Nagel point of triangle $A B C$. Let T_{A}, T_{B}, and T_{C} be the extouch points at which the A-excircle meets line $B C$, the B-excircle meets line $C A$, and C-excircle meets line $A B$, respectively. Let P_{A} be a point on $A T_{A}$ such that $A P_{A}=N T_{A}$. Let P_{B} be a point on $B T_{B}$ such that $B P_{B}=N T_{B}$. Let P_{C} be a point on $C T_{C}$ such that $C P_{C}=N T_{C}$. Find the incenter of $P_{A} P_{B} P_{C}$ triangle.

Note: "Nagel point" from Wikipedia:
In geometry, the Nagel point is a point associated with any triangle. Given a triangle ABC , let TA, TB, and TC be the extouch points in which the A-excircle meets line BC , the B -excircle meets line CA , and C excircle meets line AB, respectively. The lines ATA, BTB, CTC concur in the Nagel point N of triangle ABC. The Nagel point is named after Christian Heinrich von Nagel, a nineteenth century German mathematician, who wrote about it in 1836.

