# PROBLEM CORNER 

Md S. Warasi<br>Department of Mathematics and Statistics<br>Radford University, VA 24142<br>email: msarker@radford.edu

## Problem 1

To screen blood donors for HIV, the American Red Cross often implements pool testing, where pools are formed by compositing a set of individual donations and then the pooled samples are tested for the presence or absence of HIV; see Figure 1. A pool is positive when at least one individual in the pool has disease; however, a pool is negative when all individuals in the pool are free of disease. Unfortunately, the assay being used for diagnosis is subject to errors. When a positive pool is tested, there is a $97 \%$ probability that the test result is positive (a correct result). When a negative pool is tested, there is a $98 \%$ probability that the test result is negative (also a correct result). Assume that the individuals are independent and have an identical probability of $1 \%$ to be HIV positive. Also, assume that the test accuracy does not depend on the pool size. Suppose a pool comprised of 3 individuals is tested for HIV.
a. What is the probability that the pool tests positive?
b. Write an algorithm to approximate the probability in 1(a) by simulation.


Figure 1: Pool testing to screen blood donors for HIV.

## Problem 2

In statistics, maximum likelihood is a procedure of estimating the parameters of a probabilistic model. In the context of pool testing, the maximum likelihood technique is used to estimate individual-level disease prevalence using data observed from pools; see Problem 1 for more details about pool testing.

Consider a pool testing application, where $\mu$ denotes the probability that an individual has HIV. Suppose $J$ pools, each of which is comprised of $n$ individuals, are tested for HIV. Let $z_{j}$, for $j=1,2, \ldots, J$, denote testing responses, where $z_{j}=1$ if a pool tests positive and $z_{j}=0$ if otherwise. Finding maximum likelihood estimate of the parameter $\mu$ involves maximizing $L(\mu)=\prod_{j=1}^{J} \theta^{z_{j}}(1-\theta)^{1-z_{j}}$ as a function of $\mu$, where $\theta=1-(1-\mu)^{n}$ and $\mu \in(0,1)$; i.e., if $\widehat{\mu}$ denotes the maximum likelihood estimate of $\mu$, then $\widehat{\mu}=\arg \max _{\mu} L(\mu)$. Show that

$$
\widehat{\mu}=1-\left(1-\frac{\sum_{i=1}^{J} z_{i}}{J}\right)^{1 / n}
$$

and find $\widehat{\mu}$ for the following data, where $J=10$ and $n=4$.

| Pool testing data |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $z$ | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |

