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Problem 1

To screen blood donors for HIV, the American Red Cross often implements pool testing, where
pools are formed by compositing a set of individual donations and then the pooled samples
are tested for the presence or absence of HIV; see Figure 1. A pool is positive when at least
one individual in the pool has disease; however, a pool is negative when all individuals in the
pool are free of disease. Unfortunately, the assay being used for diagnosis is subject to errors.
When a positive pool is tested, there is a 97% probability that the test result is positive (a
correct result). When a negative pool is tested, there is a 98% probability that the test result
is negative (also a correct result). Assume that the individuals are independent and have an
identical probability of 1% to be HIV positive. Also, assume that the test accuracy does not
depend on the pool size. Suppose a pool comprised of 3 individuals is tested for HIV.

a. What is the probability that the pool tests positive?

b. Write an algorithm to approximate the probability in 1(a) by simulation.
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Figure 1: Pool testing to screen blood donors for HIV.



Problem 2

In statistics, maximum likelihood is a procedure of estimating the parameters of a probabilistic
model. In the context of pool testing, the maximum likelihood technique is used to estimate
individual-level disease prevalence using data observed from pools; see Problem 1 for more
details about pool testing.

Consider a pool testing application, where p denotes the probability that an individual
has HIV. Suppose J pools, each of which is comprised of n individuals, are tested for HIV. Let
zj, for 7 = 1,2, ..., J, denote testing responses, where z; = 1 if a pool tests positive and z; = 0
if otherwise. Finding maximum likelihood estimate of the parameter p involves maximizing
L(p) = H;.Izl 67 (1 —0)'=% as a function of pu, where =1 — (1 —p)" and p € (0,1); i.e., if 1
denotes the maximum likelihood estimate of pu, then i = arg ml?x L(p). Show that
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and find 1 for the following data, where J = 10 and n = 4.

Pool testing data
z 10100 1 1 1 11




