PROBLEM CORNER

Wei-Chi YANG
wyang@radford.edu
Department of Mathematics and Statistics
Radford University, Radford, VA 24142

Example 1 We are given a circle C with radius r_{0} and centered at $O=(0,0)$, and an ellipse of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, that is outside the given circle. Let A be a moving point on the circle. Suppose we construct the line $O A$ to intersect at a point B on the ellipse. We construct the line l_{1} passing through B and is parallel to y-axis. Next we construct the line l_{2} passing through the point A and is parallel to x-axis. (a) Find the locus for the point P that is the intersection between l_{1} and l_{2} (See Figure 1). (b) Maximize the area of $A B P$.

Figure 1. Find the locus for the point P.

Example 2 We are given a circle C^{*} centered at $O=(0,0)$ with radius r_{0}, and a cardioid which resembles the shape of $r=a(1-\cos \theta)$, where $\theta \in[0,2 \pi]$ enclosing the given circle C^{*} as shown in Figure 2(a). We are given a moving point A on the circle. Suppose we construct the line $O A$ to intersect at a point B on the cardioid. We construct the line l_{1} passing through B and is parallel to y-axis. Next we construct the line l_{2} passing through the point A and is parallel to x-axis. Find the locus for the point P that is the intersection between l_{1} and l_{2}.

Figure 2(a) Find the locus for the point P.

