PROBLEM CORNER

Wei-Chi YANG wyang@radford.edu Department of Mathematics and Statistics Radford University, Radford, VA 24142

Example 1 We are given a circle C with radius r_0 and centered at O = (0,0), and an ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, that is outside the given circle. Let A be a moving point on the circle. Suppose we construct the line OA to intersect at a point B on the ellipse. We construct the line l_1 passing through B and is parallel to y - axis. Next we construct the line l_2 passing through the point A and is parallel to x - axis. (a) Find the locus for the point P that is the intersection between l_1 and l_2 (See Figure 1). (b) Maximize the area of ABP.

Figure 1. Find the locus for the point P.

Example 2 We are given a circle C^* centered at O = (0,0) with radius r_0 , and a cardioid which resembles the shape of $r = a(1 - \cos \theta)$, where $\theta \in [0, 2\pi]$ enclosing the given circle C^* as shown in Figure 2(a). We are given a moving point A on the circle. Suppose we construct the line OA to intersect at a point B on the cardioid. We construct the line l_1 passing through B and is parallel to y - axis. Next we construct the line l_2 passing through the point A and is parallel to x - axis. Find the locus for the point P that is the intersection between l_1 and l_2 .

Figure 2(a) Find the locus for the point P.