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MOTIVATION 

It is well known that Dynamic Geometry software is an excellent tool for teaching and 

learning geometry. See, for example, [4] and other chapters from the same volume where it is 

included. But in this Problem Corner we will not deal with problems to be solved by humans using 

Dynamic Geometry, but with problems to be solved by GeoGebra automated reasoning tools, 

available either at the standard GeoGebra version (www.geogebra.org) or in an experimental fork: 

GeoGebra Discovery,  available in two options: GeoGebra Classic 5 (the one used in the following, 

GeoGebra Discovery version 2022May04, based on GeoGebra Classic 5.0.641.0-d), for Windows, 

Mac and Linux systems, that can be downloaded from https://github.com/kovzol/geogebra-

discovery;  and GeoGebra Classic 6, made for starting it in a browser at 

http://autgeo.online/geogebra-discovery/, mainly ready for use on tablets and smartphones. Details 

about the different available automated reasoning tools (Relation, Prove, Discover, Compare, 

LocusEquation commands, etc.) can be found at [5],[6]). 

Thus, the challenge here is for humans to help GeoGebra to solve the proposed problems 

[7]. The context of both is the following fact:  GeoGebra deals mostly with geometric statements 

that can be translated to algebraic equations (i.e., not involving inequalities). Although it is already 

possible to handle some inequalities (see [2]) it is on-going work to fully extend GeoGebra proving 

tools in this direction, given the high complexity (required amounts of memory and time) of such 

generalization. Thus, currently, we must think of some alternatives to approach, through 

GeoGebra, the proof of statements that include, for example, the bisector of an angle defined by 

two lines, as it is not possible to distinguish, without using inequalities, between the two possible 

bisectors associated to the two lines. This is the underlying issue concerning next Problem 1. A 

similar, even more involved, situation comes concerning Problem 2, where GeoGebra is faced 

with an optimization problem, where inequalities are implicit. 

 

PROBLEM 1 

Let I, O, H, denote the incenter, circumcenter and orthocenter of triangle ABC, 

respectively. Find necessary and sufficient conditions for the alignment of the three points. 

We make the basic construction with GeoGebra (see Figure 1). Thus, f is the perpendicular 

bisector of AB, C is a point on f (so the triangle ABC is isosceles and side a= side b). 

Now consider g, the perpendicular bisector of side a, and let O be the circumcenter, i.e. 
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the intersection of f and g. Then build the line k through B perpendicular to AC, and let H 

be the orthocenter, as the intersection of f and k. Finally, consider lines l (bisector of 

angle(CBA)) and m (bisector of angle(BAC), and their intersection at the incenter I. 

If we ask GeoGebra to find the relation between I and the Line(O, H), ie. Euler’s line, 

GeoGebra is unable to give a rigorous, affirmative assertion, only a numerically 

approximate answer.  

Figure 1: Given an isosceles triangle (a=b), O=circumcenter, H=orthocenter, I=incenter,  

Relation(I, Line (O,H)) does only answer approximately that I belongs to the Euler line. 

 

It must be remarked that there is the option (in GeoGebra Discovery) to build directly the 

incenter I using the IncircleCenter command (that defines the incenter as the center of the 

circle tangent to the three sides of the triangle), but the answer to the Relation(I, Line 

(O,H)) is also only numerical in this case, as IncircleCenter is still under development and 

there are several circles tangent to the sides of the triangle: restricting the definition to the 

incircle that lies inside the triangle requires, again, to deal with inequalities. See [8] and 

[3] for a similar approach and related difficulties. 



 

Figure 2: Conversely: LocusEquation of C for AreCollinear (H, I, O) yields “?”. 

Conversely, now we start with an arbitrary triangle ABC and we build, as the intersection 

of angle bisector lines, the Incenter I, the Orthocenter H and the Circumcenter O. Let p be 

the Euler line OH. Then we want to prove (see Figure 2) that if I lies on the Line (O, H), 

then the triangle must be isosceles, but GeoGebra ignores the locus of C for the triangle 

ABC to verify the collinearity of I, O, H.  

PROBLEM: find an alternate way to deal with incenters that do not rely on signs, so that 

GeoGebra is able to find necessary and sufficient conditions for the alignment of the I, O, 

H. 

HINT: Instead of starting with a triangle and then constructing the incenter, start with a 

given incenter and build the triangles having such incenter. Try, for the LocusEquation 

issue (Figure 2), to see if the IncircleCenter command helps at all. 

 

PROBLEM 2 

Prove that the equilateral triangles have the smallest perimeter possible containing 

a given area.  

This is a classical problem, quite easy to solve with the traditional means, but not 

so simple to be immediately solved with GeoGebra. Indeed, there is no way to display 

with GeoGebra the set of all triangles with a given (symbolic) area, unless one fixes at 

least one side (say, AB, as in Figure 3). Then, minimizing the perimeter is not a task that 

GeoGebra can accomplish automatically; it requires –for the moment– some “human 

intelligence”. 



 

Figure 3: Side AB determining line r. Free point D and parallel line s to r through 

D. Point C in s.  

PROBLEM: Given side AB and a parallel line to AB at a given distance, find (using 

GeoGebra) where to place vertex C in this line (so that the area of ABC will be equal for 

all positions of C) in such a way that the perimeter of ABC is minimum. See Figure 3. 

HINT: Guess (as human) where to place C and have GeoGebra discovering that this 

position is the sought one.  

 

Let us finish recalling the human readers of the eJMT 2022’s, Kaput’s visionary 

words [1]: technology should help us towards “a continuing transition from Doing (old) 

Things Better to Doing Better Things”.  
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