PROBLEM CORNER

Joe Santmyer
santmyerjoe@yahoo.com Retired US Government

Problem 1

The Fibonacci sequence

$$
F_{n}=1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

has fascinated hobbyists, scientists, professional mathematicians and many others. One of the many properties of these numbers is $F_{n}^{2}+F_{n+1}^{2}=F_{2(n+1)}$. Call this property \mathbf{P}. The generating function for the Fibonacci numbers is

$$
\frac{1}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

Lets experiment with Mathematica. Change the generating function to

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Mathematica produces the sequence

$$
a_{n}=1,2,5,12,29,70,169,408,985,2378,5741, \ldots
$$

Examine the sequence to see that $a_{n}^{2}+a_{n+1}^{2}=a_{2(n+1)}$. The sequence also has property \mathbf{P}. In fact, showing that the sequence has property \mathbf{P} was Putnam problem A3, 1999. If you look up the sequence in the Online Encyclopedia of Integer Sequences, OEIS, you see that this is sequence A000129 the sequence of Pell numbers.
For this first problem experiment with Mathematica to determine if the sequences corresponding to the following generating functions

$$
\begin{array}{cl}
\frac{1}{1-2^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} & \frac{1}{1-2^{3} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} \\
\frac{1}{1-3 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} & \frac{1}{1-3^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
\end{array}
$$

have property \mathbf{P} and if the sequence appears in OEIS. Use Mathematica to find an explicit formula for a_{n} in the generating function $\frac{1}{1-3^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Problem 2

The previous problem now provides motivation for your next challenge. Consider the generating function

$$
\frac{1}{1-m^{k} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where m and k are integers with $m \geq 2$ and $k \geq 1$. Use technology such as Mathematica to show that

$$
\begin{aligned}
a_{n}^{2}+a_{n+1}^{2} & =a_{2(n+1)} \\
& =\frac{\left(m^{k}+\sqrt{m^{2 k}+4}\right)^{2 n+3}-\left(m^{k}-\sqrt{m^{2 k}+4}\right)^{2 n+3}}{2^{2 n+3} \sqrt{m^{2 k}+4}} .
\end{aligned}
$$

