PROBLEM CORNER
 John McGee
 jjmcgee@radford.edu
 Department of Mathematics
 and Statistics
 Radford University, VA 24141

Problem 1

A student uses a simple theodolite to measure the angle of elevation above the horizontal of a distant radio tower. The resulting angle is $\theta_{1}=1^{\circ} 25^{\prime} 29.907^{\prime \prime}$ above horizontal. He then moves exactly $d=50$ meters closer to the tower and measures the angle again, giving $\theta_{2}=1^{\circ} 25^{\prime} 55.546{ }^{\prime \prime}$. What is the height of the tower h in meters, measured to the nearest centimeter? Be sure to include the curvature of the earth in your calculations, if necessary, with $\mathrm{R}_{\mathrm{e}}=6371 \mathrm{~km}$. Assume that the measurements are made from a height of $m=2$ meters above the ground. Figure 1 illustrates these measurements. Note: the figure is not to scale.

Figure 1 - Tower Measurements

Problem 2

A trebuchet, as illustrated in Figure 2, is a medieval machine for launching stone projectiles against enemy castles. The path of such a projectile (as shown in Figure 3) is modeled by a parabolic path with equation: $\mathrm{y}=\mathrm{ax}+\mathrm{bx}+\mathrm{c}$. A set of two dimensional (x, y) measurements are made and recorded in the table below, where, unfortunately, the x value for $\mathrm{y}=631$ is missing.

x	5	8	10	13	$x x x x$
y	576	697	740	770	631

These points do not lie exactly on a parabola, so a linear least squares method was used to fit a parabola to the points by solving the matrix equation $A^{T} A x=A^{T} b$ where the matrix A and the vector b represent the set of linear equations created by plugging the (x, y) coordinates of the points into the parabola equation $a x^{2}+b x+c=y$. The exact result of the least squares fit was the equation:

$$
y=\frac{7839578}{2592212} x^{2}+\frac{1357123223}{1728142} x+\frac{2692232981}{10368852}
$$

A plot of the fitted equation along the four known points is shown in Figure 3. Your challenge is to determine exact value of the missing x coordinate of the 5th point that will give this least squares solution.

Figure 2 - A Projectile Launcher (Trebuchet)

Figure 3 - The Projectile Path

