PROBLEM CORNER

Wei-Chi YANG
wyang@radford.edu
Department of Mathematics and Statistics
Radford University, Radford, VA 24142

In view of problems posted at [4], we post the corresponding problems in 3D as follows.
Example 1 We are given two concentric spheres centered at $O=(0,0,0)$ of radii of a and b (with $a<b$) respectively. See Figure 1, that is generated by GInMA [1] below. The unit sphere is depicted in blue and the sphere of radius 2 is the one in yellow. We are given a moving point A on the unit sphere and extend the ray $O A$ to intersect the outer sphere at a point B. Next, we project point B onto the plane E (in purple), which is a plane that passes through A and is parallel to the xy plane. Denote by P the projection of point B in E. (In other words, the vector $A P$ is perpendicular to the normal vector of the plane E.) Find the locus for the point P (See Figure 1).

Figure 1. Generating an ellipsoid from two concentric spheres.

In order to generalize the idea of obtaining a locus through perpendicular projections, we consider the following cardioid surface below:

Example 2 We are given a sphere centered at $O=(0,0)$ with radius of r_{0}, and the cardioid surface S, by rotating $[x(t), y(t)]=[a(1-\cos t) \cos t+a, a(1-\cos t) \sin t]$, where $t \in[0,2 \pi]$, around the x-axis. Let A be a moving point on the sphere and we extend the ray $O A$ to intersect the outer cardioid surface at a point B. Next, we project point B onto the plane E, which is a plane that passes through A and is parallel to the $x y$ plane. Denote by P the
projection of point B in E. In other words, the vector $A P$ is perpendicular to the normal vector of the plane E. Find the locus for the point P . (See Figures 2(a)-2(c))

Figure 2(a) A sphere, Figure 2(b) Locus cardioidal surface and surface when the point locus $\quad A$ varies

Figure 2(c) Locus
generated by MAPLE

References

[1] Geometry in Mathematical Arts (GInMA): A Dynamic Geometry System, see http://deoma-cmd.ru/en/Products/Geometry/GInMA.aspx.
[2] Geometry Expression, see http://www.geometryexpressions.com/.
[3] Maple: A product of Maplesoft, see http://maplesoft.com/.
[4] Problem Corner from the Electronic Journal of Mathematics and Technology, February 2019: https://php.radford.edu/~ejmt/ProblemCornerDocs/eJMT_ProblemCorner_Problems_Feb20
[5] Yang, W.-C. See Graphs. Find Equations. Myth or Reality? (pp. page 25-38). Proceedings of the 20th ATCM, the electronic copy can be found at this URL: http://atcm.mathandtech.org/EP2015/invited/2.pdf, ISBN:978-0-9821164-9-4 (hard copy), ISSN 1940-4204 (online version), Mathematics and Technology LLC.

