PROBLEM CORNER

Provided by Jiri Blazek
Department of Mathematics, University of South Bohemia,

E-mail: jirablazek@gmail.com

Problem 1

Consider parallelogram $\mathrm{ABCD},|A B| \neq|B C|$. Let E be the intersection of the perpendicular to the diagonal AC dropped from the point D with the line BC and let F be the foot of the perpendicular from the point B to the line DE . Assuming that the lines CF and AE perpendicular, determine the angle ACB.

Figure 1 - Parallelogram

Problem 2

Consider a triangle $A B C$ and its circumscribed circle k. On the circle choose an arbitrary point P and inside the triangle select an arbitrary point G. Consider circles GAB, GBC, GCA. Denoting $P_{A B}, P_{B C}, P_{C A}$ the inverse images of the P with respect to the circles, prove or answer following statements:
a) Points $P_{A B}, P_{B C}, P_{C A}$ and G lie on a circle C.
b) As P moves along the circle k, the centre of the circle C moves along a line.
c) Determine in the triangle a point $G=G_{L}$ in such a way that the points $P_{A B}$, $P_{B C}, P_{C A}$ and G_{L} are always collinear (we consider a line as a special case of a circle).

Hint: Apply the Simson-Wallace theorem.

Problem 3

On a circle k are arbitrarily selected points A, B, C, D. Denote the orthocenter of the triangle $A B C$ as H_{D} and analogically introduce the orthocenters $H_{A} H_{B} H_{C}$. Prove that the orthocenters lie on a circle with its radius equal to the radius of the circle k.

