PROBLEM CORNER

Provided by Jiri Blazek Department of Mathematics, University of South Bohemia,

E-mail: jirablazek@gmail.com

Problem 1

Consider parallelogram ABCD, $|AB| \neq |BC|$. Let E be the intersection of the perpendicular to the diagonal AC dropped from the point D with the line BC and let F be the foot of the perpendicular from the point B to the line DE. Assuming that the lines CF and AE perpendicular, determine the angle ACB.

Figure 1 – Parallelogram

Problem 2

Consider a triangle ABC and its circumscribed circle k. On the circle choose an arbitrary point P and inside the triangle select an arbitrary point P. Consider circles GAB, GBC, GCA. Denoting P_{AB} , P_{BC} , P_{CA} the inverse images of the P with respect to the circles, prove or answer following statements:

- a) Points P_{AB} , P_{BC} , P_{CA} and G lie on a circle C.
- b) As P moves along the circle k, the centre of the circle $\mathcal C$ moves along a line.
- c) Determine in the triangle a point $G = G_L$ in such a way that the points P_{AB} , P_{BC} , P_{CA} and G_L are always collinear (we consider a line as a special case of a circle).

Hint: Apply the Simson-Wallace theorem.

Problem 3

On a circle k are arbitrarily selected points A, B, C, D. Denote the orthocenter of the triangle ABC as H_D and analogically introduce the orthocenters H_A H_B H_C . Prove that the orthocenters lie on a circle with its radius equal to the radius of the circle k.