PROBLEM CORNER

Provided by Daniela Ferrarello, Maria Flavia Mammana, Mario Pennisi, Eugenia Taranto
 University of Catania, Italy E-mail: mariaflavia.mammana@unict.it

Let Q be a convex quadrilateral with vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.
We call edges of Q the four sides and the two diagonals, $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}, \mathrm{BD}$

Figure 1. The quadrilateral Q

Problem 1

Let $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}, \mathrm{M}_{5}, \mathrm{M}_{6}$ be the midpoints of the edges AB, BC, CD, DA, AC, BD.
Prove that the segments $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}, \mathrm{M}_{5} \mathrm{M}_{6}$ are concurrent in a point G that bisects them all.

Figure 2. Q and the midpoint segments

Problem 2

Let $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ and D^{\prime} be the centroids of the triangles $\mathrm{BCD}, \mathrm{ACD}, \mathrm{ABD}$ and ABC respectively,
Prove that

- the segments $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ and DD^{\prime} are concurrent in G ;
- G divides each segment in two parts, the one containing the vertex twice the other one.

Figure 3. Q and centroid segments

