PROBLEM CORNER

Provided by

Moshe Stupel
Shaanan College and Gordon
College, Haifa, Israel
stupel@bezeqint.net
Avi Sigler
Shaanan College, Haifa, Israel
avisigler@gmail.com

Problem 1

The ABCD is a cyclic quadrilateral. The line containing the segment AD and the line containing the segment BC intersect at point M . The line containing the segment AB and the line containing segment DC intersect at point P . The angles bisectors intersect the sides of the quadrilateral in the points: K, I, N, G (see Figure 1).

Prove that: (1) $\mathrm{PK}=\mathrm{PN}$, (2) $\angle \mathrm{MOP}=90$, (3) KING quadrilateral is a rhombus.

Figure 1.

Problem 2

Three circles with the same radius R and centers at points O_{1}, O_{2} and O_{3} are all intersected at one point D. Circles O_{1} and O_{2} are also intersected at the point A. Circles O_{1} and O_{3} are also intersected at point B and circles O_{2} and O_{3} are also intersected at point C , as shown in the Figure 2.

It must be proved that the circle passing through the 3 points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ has always (constantly) the same radius R , when there is a change in the location of the intersection points A or B or C.

Figure 2.

