Solutions to Problem Corner for February 2013

Provided byz@ (Ogose Shigeki)
Email: math@mixedmoss.com
http://mixedmoss.com

Question1\&2. A solid cone has a base: $x^{2}+y^{2} \leq \frac{4}{3}, z=0$ and a vertex $\mathrm{A}(0,0,2)$, a solid cylinder with an equation: $y^{2}+z^{2} \leq 1$ is placed in R^{3} as shown in the picture below. C is the intersection curve of the cone and the cylinder. Or C is the bottom edge of the green cone as shown in the right picture below:

1. What is the area of the region on the cylinder enclosed by the curve C ?
2. What is the volume of the cone above the cylinder?
(i.e. \square is the region on the cylinder hidden inside the sharp cone as shown in the right picture. 2 is the volume of solid bounded by the right green cone.)

Solution 1. $\quad m_{\theta}$ is the line which passes a point $(0, \cos \theta, \sin \theta)$ on the surface of the cylinder and parallel to x axis. Then the equation of m_{θ} is;

$$
m_{\theta} ;\left(\begin{array}{l}
x \tag{1}\\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta
\end{array}\right)+t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

The equation of the cone surface is;

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)=(z-2)^{2} \tag{2}
\end{equation*}
$$

By combining equations (1) \& (2), we get;

$$
\begin{aligned}
& 3\left(t^{2}+\cos ^{2} \theta\right)=(\sin \theta-2)^{2} \\
\therefore 3 t^{2}= & \sin ^{2} \theta-4 \sin \theta+4-3\left(1-\sin ^{2} \theta\right) \\
= & 4 \sin ^{2} \theta-4 \sin \theta+1 \\
= & (2 \sin \theta-1)^{2}
\end{aligned}
$$

Thus, if we let P and Q be the intersection points of m_{θ} and the cone, and $l(\theta)$ be $\overline{P Q}$ (distance between $P \& Q$), then

$$
\begin{equation*}
l(\theta)=2|t|=\frac{2}{\sqrt{3}}|2 \sin \theta-1| \tag{3}
\end{equation*}
$$

Let n be a line: $y=1, z=0$. Then the angle of the rotation from m_{θ} to n around x axis is θ, thus if we develop the cylinder, the distance between m_{θ} and n is $1 \times \theta=\theta$. Because of that, the net of the cylinder $(z \geq 0)$ is like in the right picture below. And the surface area is;

$$
S=\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} l(\theta) d \theta=\frac{2}{\sqrt{3}} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(2 \sin \theta-1) d \theta=4-\frac{4 \sqrt{3}}{9} \pi
$$

Note that in the integral above, we have used the bounday points $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$. That is because these bounday points are on both surfaces of the cylinder and the cone. So if we plug in the point $(0, \cos \theta, \sin \theta)$ into equation $3\left(x^{2}+y^{2}\right)=(z-2)^{2}$, it gives us an equation about θ as $3 \cos ^{2} \theta=$ $(2-\sin \theta)^{2}$. We leave it to readers to verify that the solutions to this equation between 0 and π are $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$.

Solution 2. The first half is the same as the problem 1. $P \& Q$ are the intersections of m_{θ} and the cylinder. As in the problem 1,

$$
\begin{equation*}
\overline{P Q}=\frac{2}{\sqrt{3}}|2 \sin \theta-1| \tag{1}
\end{equation*}
$$

Next, let α be the tangent plane to the cylinder at the line $P Q$. Then,

$$
\begin{equation*}
\alpha:(\cos \theta) y+(\sin \theta) z=1 \tag{2}
\end{equation*}
$$

Let h be the distance between α and $A(0,0,2)$, then,

$$
\begin{equation*}
h=\frac{|2 \sin \theta-1|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=|2 \sin \theta-1| \tag{3}
\end{equation*}
$$

Let $\pi(\theta)$ be the plane which passes P, Q, and $A(0,0,2)$. Let $V(\theta)$ be the volume of "a part of the cone above the cylinder surrounded by $\pi\left(\frac{\pi}{6}\right)$ and $\pi(\theta)$ ", and let ΔV be the increments of V for $\Delta \theta$. Then ΔV is the volume of the quasi pyramid created by $\pi(\theta), \pi(\theta+\Delta \theta), \triangle A Q Q^{\prime}, \triangle A P P^{\prime}$ and the cylinder. Thus, when $\Delta \theta \approx 0$,

$$
\begin{equation*}
\Delta V \approx \frac{1}{3} \times\left(\square P Q Q^{\prime} P^{\prime}\right) \times h=\frac{1}{3} \times(P Q \cdot \Delta \theta) \times h=\frac{2}{3 \sqrt{3}}(2 \sin \theta-1)^{2} \Delta \theta \tag{4}
\end{equation*}
$$

Therefore, again with the boundary points $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$, V is

$$
V=\frac{2}{3 \sqrt{3}} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(2 \sin \theta-1)^{2} d \theta=\frac{4 \sqrt{3}}{9} \pi-2
$$

Question 3. Suppose a shelf D with the right central angle and radius 1 is placed horizontally in a corner made of two walls; one wall faces the south and the other faces the east. And the sunlight comes from the southeast with 45 degrees against the ground. Suppose the shelf D is high enough (now shadow on the ground), what is the volume of the shadow of D created by the sunlight? (i.e. how many unit cubes can be hidden under the shadow?)

Solution 3. Take the origin O at the center of D, take x, y and z axes to the direction of the south, east and right above respectively. Then the direction vector of the sunlight is $(-1,-1,-\sqrt{2})$. Therefore if there was no wall the shadow of D is the translation of D in the direction of $(-1,-1,-\sqrt{2})$. Thus, the cross section of the shadow by $z=-\sqrt{2} t(t \geq 0)$ is a shaded portion of a unit circle centered at $(-t,-t,-\sqrt{2} t)$. Take an angle $\theta\left(0 \leq \theta \leq \frac{\pi}{4}\right)$ as the right above, and let S be the area of the shaded portion, then,

$$
\begin{gathered}
t=\sin \theta, \\
z=-\sqrt{2} t=-\sqrt{2} \sin \theta, \\
S=\frac{1}{2} \cdot 1^{2} \cdot 2\left(\frac{\pi}{4}-\theta\right)-\frac{1}{2} t(\cos \theta-t) \times 2=\frac{\pi}{4}-\theta+t^{2}-t \cos \theta, \\
\therefore V=\int_{-1}^{0}\left(\frac{\pi}{4}-\theta+\sin ^{2} \theta-\sin \theta \cos \theta\right) d z \\
= \\
=\sqrt{2} \int_{0}^{\frac{\pi}{4}}\left(\frac{\pi}{4}-\theta+\sin ^{2} \theta-\sin \theta \cos \theta\right) \cos \theta d \theta \\
= \\
\frac{\sqrt{2} \pi}{4} \int_{0}^{\frac{\pi}{4}} \cos \theta d \theta-\sqrt{2} \int_{0}^{\frac{\pi}{4}} \theta \cos \theta d \theta+\sqrt{2} \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta \cos \theta d \theta-\sqrt{2} \int_{0}^{\frac{\pi}{4}} \sin \theta \cos ^{2} \theta d \theta \\
= \\
\frac{\sqrt{2} \pi}{4}[\sin \theta]_{0}^{\frac{\pi}{4}}-\sqrt{2}[\theta \sin \theta+\cos \theta]_{0}^{\frac{\pi}{4}}+\frac{\sqrt{2}}{3}\left[\sin ^{3} \theta+\cos ^{3} \theta\right]_{0}^{\frac{\pi}{4}} \\
= \\
\frac{2 \sqrt{2}}{3}-\frac{2}{3}
\end{gathered}
$$

[^0]Using Mathematica to solve these problems can be found in this link.

[^0]: * I came up with this problem when I saw a small shelf in my bathroom.

