Solutions to Problem Corner for February 2013

Provided byz@ (Ogose Shigeki)

Email: math@mixedmoss.com

http://mixedmoss.com

Question 1 & 2. A solid cone has a base: $x^2 + y^2 \le \frac{4}{3}$, z = 0 and a vertex A(0,0,2), a solid cylinder with an equation: $y^2 + z^2 \le 1$ is placed in R^3 as shown in the picture below. C is the intersection curve of the cone and the cylinder. Or C is the bottom edge of the green cone as shown in the right picture below:

- 1. What is the area of the region on the cylinder enclosed by the curve C?
- 2. What is the volume of the cone above the cylinder?

(i.e. $\boxed{}$ is the region on the cylinder hidden inside the sharp cone as shown in the right picture. $\boxed{}$ is the volume of solid bounded by the right green cone.)

Solution 1. m_{θ} is the line which passes a point $(0, \cos \theta, \sin \theta)$ on the surface of the cylinder and parallel to x axis. Then the equation of m_{θ} is;

$$m_{\theta}$$
; $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ \cos \theta \\ \sin \theta \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\cdots (1)$

The equation of the cone surface is;

$$3(x^2 + y^2) = (z - 2)^2 \qquad \cdots (2)$$

By combining equations (1) & (2), we get;

$$3(t^2 + \cos^2 \theta) = (\sin \theta - 2)^2$$

$$\therefore 3t^2 = \sin^2 \theta - 4\sin \theta + 4 - 3(1 - \sin^2 \theta)$$
$$= 4\sin^2 \theta - 4\sin \theta + 1$$
$$= (2\sin \theta - 1)^2$$

Thus, if we let P and Q be the intersection points of m_{θ} and the cone, and $l(\theta)$ be \overline{PQ} (distance between P&Q), then

$$l(\theta) = 2|t| = \frac{2}{\sqrt{3}}|2\sin\theta - 1| \qquad \cdots (3)$$

Let n be a line: y = 1, z = 0. Then the angle of the rotation from m_{θ} to n around x axis is θ , thus if we develop the cylinder, the distance between m_{θ} and n is $1 \times \theta = \theta$. Because of that, the net of the cylinder ($z \ge 0$) is like in the right picture below. And the surface area is;

$$S = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} l(\theta)d\theta = \frac{2}{\sqrt{3}} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (2\sin\theta - 1)d\theta = 4 - \frac{4\sqrt{3}}{9}\pi \qquad \cdots ans.$$

Note that in the integral above, we have used the bounday points $\frac{\pi}{6}$ and $\frac{5\pi}{6}$. That is because these bounday points are on both surfaces of the cylinder and the cone. So if we plug in the point $(0, \cos \theta, \sin \theta)$ into equation $3(x^2 + y^2) = (z - 2)^2$, it gives us an equation about θ as $3\cos^2\theta = (2 - \sin \theta)^2$. We leave it to readers to verify that the solutions to this equation between 0 and π are $\frac{\pi}{6}$ and $\frac{5\pi}{6}$.

Solution 2. The first half is the same as the problem 1. P & Q are the intersections of m_{θ} and the cylinder. As in the problem 1,

$$\overline{PQ} = \frac{2}{\sqrt{3}} |2\sin\theta - 1| \qquad \cdots (1)$$

Next, let α be the tangent plane to the cylinder at the line PQ. Then,

$$\alpha : (\cos \theta)y + (\sin \theta)z = 1 \qquad \cdots (2)$$

Let h be the distance between α and A(0,0,2), then,

$$h = \frac{|2\sin\theta - 1|}{\sqrt{\cos^2\theta + \sin^2\theta}} = |2\sin\theta - 1| \qquad \cdots (3)$$

Let $\pi(\theta)$ be the plane which passes P, Q, and A(0,0,2). Let $V(\theta)$ be the volume of "a part of the cone above the cylinder surrounded by $\pi\left(\frac{\pi}{6}\right)$ and $\pi(\theta)$ ", and let ΔV be the increments of V for $\Delta \theta$. Then ΔV is the volume of the quasi pyramid created by $\pi(\theta)$, $\pi(\theta + \Delta \theta)$, $\Delta AQQ'$, $\Delta APP'$ and the cylinder. Thus, when $\Delta \theta \approx 0$,

$$\Delta V \approx \frac{1}{3} \times (\Box PQQ'P') \times h = \frac{1}{3} \times (PQ \cdot \Delta\theta) \times h = \frac{2}{3\sqrt{3}} (2\sin\theta - 1)^2 \Delta\theta \qquad \cdots (4)$$

Therefore, again with the boundary points $\frac{\pi}{6}$ and $\frac{5\pi}{6}$, V is

$$V = \frac{2}{3\sqrt{3}} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (2\sin\theta - 1)^2 d\theta = \frac{4\sqrt{3}}{9}\pi - 2 \qquad \cdots ans.$$

Question 3. Suppose a shelf D with the right central angle and radius 1 is placed horizontally in a corner made of two walls; one wall faces the south and the other faces the east. And the sunlight comes from the southeast with 45 degrees against the ground. Suppose the shelf D is high enough (now shadow on the ground), what is the volume of the shadow of D created by the sunlight? (i.e. how many unit cubes can be hidden under the shadow?)

Solution 3. Take the origin O at the center of D, take x, y and z axes to the direction of the south, east and right above respectively. Then the direction vector of the sunlight is $(-1, -1, -\sqrt{2})$. Therefore **if there was no wall** the shadow of D is the translation of D in the direction of $(-1, -1, -\sqrt{2})$. Thus, the cross section of the shadow by $z = -\sqrt{2}t$ ($t \ge 0$) is a shaded portion of a unit circle centered at $(-t, -t, -\sqrt{2}t)$. Take an angle $\theta \left(0 \le \theta \le \frac{\pi}{4}\right)$ as the right above, and let S be the area of the shaded portion, then,

$$t = \sin \theta,$$

$$z = -\sqrt{2}t = -\sqrt{2}\sin \theta,$$

$$S = \frac{1}{2} \cdot 1^2 \cdot 2\left(\frac{\pi}{4} - \theta\right) - \frac{1}{2}t(\cos \theta - t) \times 2 = \frac{\pi}{4} - \theta + t^2 - t\cos \theta,$$

Using Mathematica to solve these problems can be found in this link.

^{*} I came up with this problem when I saw a small shelf in my bathroom.