PROBLEM CORNER

Wei-Chi YANG
wyang@radford.edu
Department of Mathematics and Statistics
Radford University, Radford, VA 24142

Example 1 We are given a circle C with radius r_{0} and centered at $O=(0,0)$, and an ellipse of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, that is outside the given circle. Let A be a moving point on the circle. Suppose we construct the line $O A$ to intersect at a point B on the ellipse. We construct the line l_{1} passing through B and is parallel to y-axis. Next we construct the line l_{2} passing through the point A and is parallel to x-axis. (a) Find the locus for the point P that is the intersection between l_{1} and l_{2}. (b) Maximize the area of $A B P$.

Figure 1 Generating the locus from a circle and an ellipse

We note that finding the locus for the point P can be solved by hand without too much work: We write $A=\left(A_{x}, A_{y}\right), B=\left(B_{x}, B_{y}\right)$, and let $O B=r, \measuredangle B O C=\theta$, then $B=(a \cos \theta, b \sin \theta)$. We see $O B^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta=a^{2} \cos ^{2} \theta+b^{2}\left(1-\cos ^{2} \theta\right)=b^{2}+\left(a^{2}-b^{2}\right) \cos ^{2} \theta$. Thus $r^{2}=b^{2}+\left(a^{2}-b^{2}\right) \frac{1+\cos 2 \theta}{2}$, which leads to

$$
\begin{equation*}
O B=r=\frac{\sqrt{2} a b}{\sqrt{a^{2}+b^{2}-\left(a^{2}-b^{2}\right) \cos 2 \theta}} . \tag{1}
\end{equation*}
$$

If we write locus $P=\left(P_{x}, P_{y}\right)$, then $\left(P_{x}\right)^{2}=\left(\frac{\sqrt{2} a b}{\sqrt{a^{2}+b^{2}-\left(a^{2}-b^{2}\right) \cos 2 \theta}}\right)^{2} \cos ^{2} \theta=\frac{2 a^{2} b^{2} \cos ^{2} \theta}{a^{2}+b^{2}-\left(a^{2}-b^{2}\right) \cos 2 \theta}$ and $\left(P_{y}\right)^{2}=r_{0}^{2} \sin ^{2} \theta$. For part (b), the area of $A B P$ is the absolute value of

$$
\begin{equation*}
\frac{1}{2}(A P)(B P)=\frac{1}{2}\left(P_{x}-A_{x}\right)\left(B_{y}-P_{y}\right)=\frac{1}{2}\left(r \cos \theta-r_{0} \cos \theta\right)\left(r \sin \theta-\sqrt{r_{0}} \sin \theta\right) . \tag{2}
\end{equation*}
$$

Now we substitute r in Eq. (10) into the area of $A B P$ and use a CAS to simplify $\frac{1}{2}(A P)(B P)$ to the following form:

$$
\begin{equation*}
\frac{1}{4} \sin 2 \theta\left(\frac{\sqrt{2} a b}{\sqrt{a^{2}+b^{2}-\left(a^{2}-b^{2}\right) \cos 2 \theta}}-r_{0}\right)^{2} \tag{3}
\end{equation*}
$$

The locus corresponds to an ellipse is sketched in Figure 1 using [2]. If we use a CAS such as [3] with specific numeric values of $a=5, b=4$ and $r_{0}=\frac{1}{\sqrt{2}}$, we find the maximum area of $A B P$ to be 3.5631 , which occurs when θ is about 0.655308 radians or 37.5464 degrees.

Example 2 We are given a circle C^{*} centered at $O=(0,0)$ with radius r_{0}, and a cardioid which resembles the shape of $r=a(1-\cos \theta)$, where $\theta \in[0,2 \pi]$ enclosing the given circle C^{*} as shown in Figure 2(a). We are given a moving point A on the circle. Suppose we construct the line $O A$ to intersect at a point B on the cardioid. We construct the line l_{1} passing through B and is parallel to y-axis. Next we construct the line l_{2} passing through the point A and is parallel to x-axis. Find the locus for the point P that is the intersection between l_{1} and l_{2}.

Figure 2(a) Locus generated by [1]

Figure 2(b). Locus generated by Maple [3].

First, we notice in Figure 2(a), the cardioid, of the shape $r=a(1-\cos \theta)$, enclosing the circle, is centered at the point C and the circle C^{*} is centered at $(0,0)$. If we use $O=(0,0)$ as the center of the cardioid enclosing the circle, we may write the parametric equation $[x(\theta), y(\theta)]$ for such cardioid as $x(\theta)=a(1-\cos \theta) \cos (\theta)+O C$ and $y(\theta)=a(1-\cos \theta) \sin (\theta)$ with $O C>r_{0}$. Now, we let $\theta=\measuredangle B O C, \varphi=\measuredangle B C D, O B=R, O C=a$. We next will express R in terms of a and angle φ. We write locus $P=\left(P_{x}, P_{y}\right), A=\left(A_{x}, A_{y}\right)$, and $B=\left(B_{x}, B_{y}\right)$, and note $P_{y}=A_{y}=r_{0} \sin \theta$ and $P_{x}=B_{x}$. Note the original blue cardioid can be represented by $r=a(1-\cos \varphi)$. We observe $B_{x}=R \cos \theta=a+r \cos \varphi$ and $B_{y}=R \sin \theta=r \sin \varphi$, which leads to

$$
\begin{align*}
R^{2} & =a^{2}+2 a r \cos \varphi+r^{2} \\
& =a^{2}+2 a(a(1-\cos \varphi)) \cos \varphi+a^{2}(1-\cos \varphi)^{2} \\
& =a^{2}\left(2-\cos ^{2} \varphi\right) . \text { This implies } \tag{4}\\
R & =a \sqrt{2-\cos ^{2} \varphi} . \tag{5}
\end{align*}
$$

In view of $P_{x}=B_{x}$, we see

$$
\begin{align*}
\frac{P_{x}}{a} & =1+\frac{r}{a} \cos \varphi=1+(1-\cos \varphi) \cos \varphi=\sin ^{2} \varphi+\cos \varphi, \\
P_{x} & =a\left(\sin ^{2} \varphi+\cos \varphi\right) . \tag{6}
\end{align*}
$$

Furthermore, we see

$$
\begin{align*}
\frac{P_{y}}{r_{0}} & =\sin \theta=\frac{r}{R} \sin \varphi=\frac{r \sin \varphi}{a \sqrt{2-\cos ^{2} \varphi}}=\frac{\sin \varphi(1-\cos \varphi)}{\sqrt{2-\cos ^{2} \varphi}} \text { and } \\
P_{y} & =r_{0}\left(\frac{\sin \varphi(1-\cos \varphi)}{\sqrt{2-\cos ^{2} \varphi}}\right) \tag{7}
\end{align*}
$$

The parametric representative of locus P using angle φ is then $\left[P_{x}, P_{y}\right]$. We plot the locus [$\left.P_{x}, P_{y}\right]$ together with cardioid and circle when $r_{0}=1$ and $O C=2$ in Figure 2(b) with the help of [3]. If we make the substitution of $t=\tan \frac{\varphi}{2}$, then we can see that $t^{4}+4 t^{3} \cot \theta-4 t^{2}-1=0$, which yields

$$
\begin{equation*}
\frac{P_{x}}{a}=\frac{2 t^{2}}{1+t^{2}} \text { and } \frac{P_{y}}{a}=\sin \theta . \tag{8}
\end{equation*}
$$

The Eqs. (6) and (7) represent the parametric equation for the locus P in terms of angle φ. The sketch of the locus corresponding to a cardioid is shown using [1] in Figure 2(a).

References

[1] Geometry Expression, see http://www.geometryexpressions.com/.
[2] Geometry in Mathematical Arts (GInMA): A Dynamic Geometry System, see http://deoma-cmd.ru/en/Products/Geometry/GInMA.aspx.
[3] Maple: A product of Maplesoft, see http://maplesoft.com/.
[4] Yang, W.-C. See Graphs. Find Equations. Myth or Reality? (pp. page 25-38). Proceedings of the 20th ATCM, the electronic copy can be found at this URL: http://atcm.mathandtech.org/EP2015/invited/2.pdf, ISBN:978-0-9821164-9-4 (hard copy), ISSN 1940-4204 (online version), Mathematics and Technology LLC.

