PROBLEM CORNER

Problem 1 is provided by István Blahota E-mail:
blahota.istvan@nye.hu

Problem 2 is provided by Zoltán Kovács

E-mail:
kovacs.zotan@nye.hu
Institute of Mathematics and Computer Science
University of Nyíregyháza, Nyíregyháza, Sóstói út 31/b. 4400

Problem 1

S. S. Pillai proved in [1] the following theorem. When $\mathrm{m} \leq 16$, in every set of m consecutive integers, there is at least one integer which is relatively prime to all the others in the set. He realized that the smallest number m for which there is a sequence of m consecutive integers without a number relatively prime to all others is $m=17$. Find the smallest natural number n such that in the sequence $n, n+1, \ldots, n+16$ there is no number relatively prime to the others.
[1] S.S. Pillai, On m consecutive integers-I., Proceedings of the Indian Academy of Sciences Vol 11/1, pp 6-12 (1940).
https://www.ias.ac.in/article/fulltext/seca/011/01/0006-0012

SOLUTION

The answer is $n=2184$. We can find it using a program, like this Maxima worksheet. (It is in wxMaxima environment.)

Problem 2

Draw all the diagonals of a regular polygon. How many interior intersections are there on a given diagonal? For example, the figure shows a regular 18 -gon and all its diagonals. The diagonal connecting the opposite vertices has 27 interior intersection points.

Figure. The regular 18-gon with its diagonals. There are 27 interior intersection points on the longest diagonal: 8 twoline intersections, 12 three-line intersections, 6 five-line intersections, and 1 nine-line intersection

Solution

Give the vertices of the regular n-gon with a serial number counterclockwise after the vertex 0 is fixed (Figure 1). A diagonal can thus be defined by two numbers. Fix the diagonal $(0, i)$ and intersect it with the diagonal (j, k) as shown in the figure. Write the law of sines in the triangles BMC and AMB:

$$
\frac{x}{z}=\frac{\sin (n-k) \alpha}{\sin (i-j) \alpha}=\frac{\sin k \alpha}{\sin (i-j) \alpha}, \frac{z}{y}=\frac{\sin (k-i) \alpha}{\sin j \alpha},
$$

where $\alpha=\frac{\pi}{n}$. From this we can conclude that

$$
\frac{x}{y}=\frac{\sin k \alpha}{\sin (i-j) \alpha} \cdot \frac{\sin (k-i) \alpha}{\sin j \alpha}
$$

If we fix i , then $\mathrm{j}=1,2, \ldots, \mathrm{i}-1$, and $\mathrm{k}=\mathrm{i}+1, \mathrm{i}+2, \ldots, \mathrm{n}-1$. It means that the maximum number of interior intersection points is $(i-1) \cdot(n-i-1)$. However, we may have multiple intersection points. Then, we need to test whether different diagonals (j, k) and ($\mathrm{j}^{\prime}, \mathrm{k}^{\prime}$) produce the same ratio or not. If not, we have a double intersection point (i.e. (j , k) intersects $(0, i)$). If two diagonals produce the same ratio, then the intersection is triple (i.e. (j, k) and ($\mathrm{j}^{\prime}, \mathrm{k}^{\prime}$) intersects ($0, \mathrm{i}$) at the same point), and so on.

Figure 1.
A Wolfram Cloud implementation is here:

https://www.wolframcloud.com/obj/kovacs764/Published/diagonals.nb

The password is ProblemCorner2020.

