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PROBLEM 1 

The book (Lam & Pope) attributes the following pentagon construction from an A4 paper to 

David Collier, which it notes gives an approximately regular pentagon (Figure 1). 

 

 
 

 

 

Figure 1. Pentagon construction 

What should be the ratio of the sides of the rectangle so that the resulting pentagon is a regular 

pentagon? 

Reference 

Lam, T. K., & Pope, S. Learning Mathematics with Origami. Association of Teachers of 

Mathematics. 
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SOLUTION  

 

First, fold out the sheet of paper. The third- and fourth-fold lines appear as open polygons on the 

sheet (Figure 2). Next, construct the pentagon using GeoGebra, which will give ideas to answer 

the question (Figure 3). The first fold line is the bisector of the 𝐷𝐵 diagonal of the rectangle. The 

second is the diagonal of the rectangle, i.e., the symmetry ax of the pentagon. 

 

Figure 2. The folded-out sheet of paper 

If GeoGebra is used to construct the third and the fourth fold lines (see 

https://www.geogebra.org/m/gguvq7yr) , the angle bisector of the 𝐷𝐵𝐶  angle and the 𝐷𝐵𝐴 

angle must be inserted (𝑓 and 𝑔). The pentagon is immediately visible on the GeoGebra drawing 

area (𝑃𝑄𝐷𝑄′𝑃′).  

 

Figure 3. Construction with GeoGebra 

 

 

https://www.geogebra.org/m/gguvq7yr
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We see that for the pentagon to be regular, the 𝐵𝐷𝑄 angle must be 54°. So the aspect ratio in 

question should be 1: tan 54°. However, we still need to prove that the result is a regular 

pentagon if we start from this aspect ratio sheet. The angle 𝐷𝐵𝑄∠ = 36°/2 = 18°and from this 

fact, it follows that all the angles of the pentagon equal 108°(Figure 4). 

 

Figure 4. All the angles equal 108°  

The sides of the pentagon are as follows: 

𝑃𝑃′ = 𝑡𝑎𝑛(18°)√1 + 𝑡𝑎𝑛2(54°) ,  𝐷𝑄 = 1 − 𝑡𝑎𝑛(54°) 𝑡𝑎𝑛(18°). 

Computing the values with WolframOne, we get  

  

 

 

It is easy to see that the expressions above are equal. 

Now, we have an equiangular pentagon with the property that three sides (𝐷𝑄,𝐷𝑄′, 𝑃𝑃′) are 

equal, and the other two sides are also equal: 𝑃𝑄 = 𝑃′𝑄′ = 𝑎. Let 𝑧 be the complex number 

parallel with the vector 𝑃𝑄 on the Gauss-plane, and |𝑧| = 1 where 𝑃′𝑃 is horizontal and of unit 

length (Figure 5). 



4 
 

 

Figure 5. The pentagon on the complex plane 

Then  

𝑧0 + 𝑎𝑧1 + 𝑧2 + 𝑧3 + 𝑎𝑧4 = 0. 

Moreover 

𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 = 0. 

Subtracting the above equations, we get 

(𝑎 − 1)𝑧1 + (𝑎 − 1)𝑧4 = 0, 

Which fact implies that 𝑎 = 1, and all the sides of the pentagon are equal. 

 
PROBLEM 2 

MOTIVATION 

There is a famous problem, sometimes referred to as the “water well problem” (Goddijn & Reuter, 

1995; Büchter & Leuders, 2005, p. 33), dates back to Descartes and Dirichlet who stated the problem in 

1644 and 1850, respectively: “How can a plane be divided into areas (polygons) so that each point in an 

area is closer to the generating point than to any other generating point?” (Fisher, 2004)  

This problem has been used in didactical settings to introduce the idea of perpendicular bisectors 

in problem-oriented teaching (e.g., Holzäpfel et al., 2016; Möller & Rott, 2017). 

PROBLEM AND VARIATIONS 

Here, we want to pose a similar yet quite different problem, to the water well problem described 

above. You still want to reach water as quickly as possible: 

The canal problem 

The map shows a parcel of land. There are three canals 

in this area. 

Develop a partition of the areas into regions in a way 

that from each place in a region the canal in that region 

is the closest. 
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The canal problem was derived from the water well problem as a variation, by slightly altering the 

conditions of the problem (the distance to the lines instead of points in this case) (cf. Brown & Walter, 1983; 

Silver, 1994). Can you pose an easier or a more difficult problem by varying the canal problem? Does the 

solution strategy change when there are fewer or more canals? What if there were (curved) rivers instead of 

(straight) canals? What if there were lakes (that do or do not look like circles)? 
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SOLUTION 

The water well problem can be solved by using perpendicular bisectors, i.e. lines that have the 

property that each of their points is equidistant to two given points which are water wells in this context. 

Constructing a perpendicular bisector for each pair of water wells results in a so-called Voronoi diagram 

(see Fisher, 2004). 

For the canal problem, borders are needed that are equidistant to lines. As no pair of canals is 

parallel to each other, angle bisectors are what is needed. A solution for the area that is enclosed by the three 

canals could look like this (with three canals, we have a triangle and, thus, construct the center of the 

incircle): 

 

Wait, there are more areas outside the triangle that also need to be partitioned. To do this, we look at the 

parts of the angle bisectors that lie outside the triangle; and we also need to construct additional angle 

bisectors at the corners of the triangle for the pairs of angles that are outside of the triangle. We now have 

six angle bisectors that divide the whole area into polygons and for each polygon we need to decide which 

canal is the closest one. This leads to a partition of the whole area that looks like this: 

https://pages.mtu.edu/~shene/PUBLICATIONS/2004/Hull2VD.pdf
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The solution to the canal problem is also a Voronoi diagram, which is also true for the solutions of the 

further variations hinted at in the problem corner. The interested reader can learn more about such diagrams 

with curved boundaries in Ramamurthy and Farouki (1999a, 1999b).  
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