PROBLEM CORNER

Joe Santmyer
santmyerjoe@yahoo.com Retired US Government

Problem 1

The Fibonacci sequence

$$
F_{n}=1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

has fascinated hobbyists, scientists, professional mathematicians and many others. One of the many properties of these numbers is $F_{n}^{2}+F_{n+1}^{2}=F_{2(n+1)}$. Call this property \mathbf{P}. The generating function for the Fibonacci numbers is

$$
\frac{1}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

Lets experiment with Mathematica. Change the generating function to

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Mathematica produces the sequence

$$
a_{n}=1,2,5,12,29,70,169,408,985,2378,5741, \ldots
$$

Examine the sequence to see that $a_{n}^{2}+a_{n+1}^{2}=a_{2(n+1)}$. The sequence also has property \mathbf{P}. In fact, showing that the sequence has property \mathbf{P} was Putnam problem A3, 1999. If you look up the sequence in the Online Encyclopedia of Integer Sequences, OEIS, you see that this is sequence A000129 the sequence of Pell numbers.
For this first problem experiment with Mathematica to determine if the sequences corresponding to the following generating functions

$$
\begin{array}{cl}
\frac{1}{1-2^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} & \frac{1}{1-2^{3} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} \\
\frac{1}{1-3 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} & \frac{1}{1-3^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
\end{array}
$$

have property \mathbf{P} and if the sequence appears in OEIS. Use Mathematica to find an explicit formula for a_{n} in the generating function $\frac{1}{1-3^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Problem 2

The previous problem now provides motivation for your next challenge. Consider the generating function

$$
\frac{1}{1-m^{k} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where m and k are integers with $m \geq 2$ and $k \geq 1$. Use technology such as Mathematica to show that

$$
\begin{aligned}
a_{n}^{2}+a_{n+1}^{2} & =a_{2(n+1)} \\
& =\frac{\left(m^{k}+\sqrt{m^{2 k}+4}\right)^{2 n+3}-\left(m^{k}-\sqrt{m^{2 k}+4}\right)^{2 n+3}}{2^{2 n+3} \sqrt{m^{2 k}+4}} .
\end{aligned}
$$

Solution to Problem 1: Mathematica file Problem.m shows that the sequence $\left\{a_{n}\right\}$ corresponding to each generating function has property \mathbf{P}. The sequence for the first, second, third and fourth generating function is sequence A001076, A041025, A006190 and A099371 respectively in OEIS. For the generating function $\frac{1}{1-3^{2} x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n}$ Mathematica produces the following explicit formula

$$
a_{n}=\frac{(85-9 \sqrt{85})(9-\sqrt{85})^{n}+(85+9 \sqrt{85})(9+\sqrt{85})^{n}}{85 \cdot 2^{n+1}}
$$

Solution to Problem 2: The following solution uses Mathematica. First, use Mathematica to show that

$$
a_{n}=\frac{\left(m^{k}+\sqrt{m^{2 k}+4}\right)^{n+1}-\left(m^{k}-\sqrt{m^{2 k}+4}\right)^{n+1}}{2^{n+1} \sqrt{m^{2 k}+4}} .
$$

Direct calculation of $a_{2(n+1)}$ and $a_{n}^{2}+a_{n+1}^{2}$ using the above formula with Mathematica leads to the desired equation.

Appendix: The solutions in .m format are listed in plain text below:
(* Solution to Problem 1*)
(* has property P, sequence A000045 in OEIS *)
FSeries=Series[1/(1-x-x^2), \{x, 0, 20\}];
Print["FSeries=",FSeries];
(* has property P, sequence A000129 in OEIS *)
A2Series $=$ Series $\left[1 /\left(1-2^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2\right),\{\mathrm{x}, 0,20\}\right]$;
Print["A2Series=",A2Series];
(* has property P, sequence A001076 in OEIS *)
A2SQSeries $=$ Series $\left[1 /\left(1-2^{\wedge} 2^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2\right),\{\mathrm{x}, 0,20\}\right]$;
Print["A2SQSeries=",A2SQSeries];
(* has property P, sequence A041025 in OEIS *)
A2CUSeries $=$ Series $\left[1 /\left(1-2^{\wedge} 3^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2\right),\{\mathrm{x}, 0,20\}\right]$;

```
Print["A2CUSeries=",A2CUSeries];
(* has property P, sequence A006190 in OEIS *)
A3Series \(=\) Series \(\left[1 /\left(1-3^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2\right),\{\mathrm{x}, 0,20\}\right]\);
Print["A3Series=",A3Series];
(* has property P, sequence A099371 in OEIS *)
A3SQSeries \(=\) Series \(\left[1 /\left(1-3^{\wedge} 2^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2\right),\{\mathrm{x}, 0,20\}\right]\);
Print["A3SQSeries=",A3SQSeries];
an \(=\) Assuming \([\mathrm{n}>=2 \& \&\) Element[n, Integers], \(\backslash\)
FullSimplify[SeriesCoefficient[1/(1-3^2 \(\left.\left.\left.x-x^{\wedge} 2\right),\{x, 0, n\}\right]\right]\);
Print["an=",an];
aList=List[];
For \([\mathrm{j}=0, \mathrm{j}<=15, \mathrm{j}++\),
an \(=\left(\left(85-9^{*} \operatorname{Sqrt}[85]\right) *(9-\operatorname{Sqrt}[85]) \wedge j+\backslash\right.\)
\(\left.\left(85+9^{*} \operatorname{Sqrt}[85]\right)^{*}(9+\operatorname{Sqrt}[85]) \wedge \mathrm{j}\right) /\left(85^{*} 2^{\wedge}(1+\mathrm{j})\right)\);
AppendTo[aList,Round[N[an]]];
];
Print[aList];
(* Solution to Problem 2 *)
an=Assuming[ \(\mathrm{n}>=2 \& \&\) Element[n, Integers] \&\& m>=2 \&\& Element[m, Integers] \}
\&\& \(\mathrm{k}>=1 \& \&\) Element[m, Integers], \}
FullSimplify[SeriesCoefficient[1/(1-m^k x-x^2), \(\{\mathrm{x}, 0, \mathrm{n}\}]]]\);
Print["an=",an];
\(\mathrm{f}\left[\mathrm{n}_{-}\right]:=\left(\left(\mathrm{m}^{\wedge} \mathrm{k}+\operatorname{Sqrt}\left[4+\mathrm{m}^{\wedge}\left(2^{*} \mathrm{k}\right)\right]\right)^{\wedge}(1+\mathrm{n})-\backslash\right.\)
\(\left.\left(\mathrm{m}^{\wedge} \mathrm{k}-\operatorname{Sqrt}\left[4+\mathrm{m}^{\wedge}\left(2^{*} \mathrm{k}\right)\right]\right)^{\wedge}(1+\mathrm{n})\right) /\left(2^{\wedge}(1+\mathrm{n})^{*} \operatorname{Sqrt}\left[4+\mathrm{m}^{\wedge}\left(2^{*} \mathrm{k}\right)\right]\right) ;\)
lhs \(=(\mathrm{f}[\mathrm{n}])^{\wedge} 2+(\mathrm{f}[\mathrm{n}+1])^{\wedge} 2\);
rhs \(=\mathrm{f}[2(\mathrm{n}+1)]\);
Print["lhs=",FullSimplify[lhs]];
Print["rhs=",FullSimplify[rhs]];
(* Numerical test for particular values of \(\mathrm{m}, \mathrm{k}, \mathrm{n}\) *)
For \([\mathrm{m}=3, \mathrm{~m}<=5,++\mathrm{m}\),
For \([\mathrm{k}=2, \mathrm{k}<=4,++\mathrm{k}\),
For \([\mathrm{n}=1, \mathrm{n}<=10, \mathrm{n}++\),
lhs \(=(\mathrm{f}[\mathrm{n}])^{\wedge} 2+(\mathrm{f}[\mathrm{n}+1])^{\wedge} 2\);
rhs \(=\mathrm{f}[2(\mathrm{n}+1)]\);
(*Print["lhs=",N[lhs]," rhs=",N[rhs]];*)
If[ lhs != rhs,
Print["Not Equal!!!"];
Exit[];
];
];
];
];
Print["Equal!!!"];
```


References

[1] Chen, H., Excursions in Classical Analysis, Mathematical Association of America, Inc., 2010.

