Solutions to Problem Corner-June 2016

Jos ${ }^{\prime}$ e A. Vallejo
E-mail: jvallejo@fc.uaslp.mx

Problem 1

A series is just an infinite sum. It can be defined as the limit when n goes to infinity of the nth partial sums (that is, the sum of the first n terms). In this problem we consider the sum of a series in which the coefficients satisfy a linear recurrence. Compute the sum of the series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where the sequence $\left(a_{n}\right)$ satisfy $a_{0}=1, a_{1}=2$ and

$$
5 a_{n}+2 a_{n-1}-4 a_{n-2}=0
$$

(Answer: $\left.(5+12 x) /\left(5+2 x-4 x^{2}\right)\right)$. Link to RecurrentSeries.pdf

Problem 2

Infinite products, first studied by Euler and developed extensively by Weierstrass, can be defined analogously to series, as the limit of their partial products. Compute the infinite product

$$
\prod_{n=0}^{\infty} \frac{a^{2^{n}}+1}{a^{2^{n}}}
$$

where $a>1$ (Answer: $a /(a-1)$). Link to InfiniteProducts.pdf
Remark: While these problems can be done "by hand" (none of them requires maths beyond elementary calculus of limits), it is much more interesting to do some experimentation first with a CAS (such as Maxima) to get an idea of the relations and patterns between the inputs of the problems, which can lead to educated guesses for the solutions.

