# The Problem Corner 

José A. Vallejo<br>Email: jvallejo@fc.uaslp.mx

1. Modern cities are a mess. Every morning I have to decide what to do for going to work: To take the car or the subway. Of course, the car is worse (I am late one of every two times), but the subway is always crowded and uncomfortable (although I am late only one of every four times). I have not found a rule for predicting when I will be late due to the way of transportation, and for lack of a better algorithm what I do is to repeat the choice next day, when I am on time, and switch the transportation method next day when I am late. But I am not quite sure whether or not this is a good idea. For instance: What will be the probability of being late the day number 123 ?.
Solution: If $p_{n}$ is the probability of taking the car on the $n$th day, the probability of taking the subway that same day will be $1-p_{n}$. But I will take the car either if I have taken it on the $(n-1)$ th day and I have been on time (which happens one of every two times) or if I have taken the subway and have been late (one of every four times). Thus, we have the relation

$$
p_{n}=\frac{1}{2} p_{n-1}+\frac{1}{4} p_{n-1} .
$$

This recurrence is very easy to solve 'by hand', but hey!, let's use Maxima (which includes the nice package solve_rec for this kind of problems):
(\%i1) load("solve_rec") $\$$
(\%i2) solve_rec(p[n-1]/2+(1-p[n-1])/4-p[n],p[n]);

$$
p_{n}=\frac{\% k_{1}}{4^{n}}-\frac{1}{34^{n}}+\frac{1}{3}
$$

Thus, Maxima says that the probability of taking the car on the $n$th day is

$$
p_{n}=\frac{1}{3}\left(1-\frac{1}{4^{n-1}}\right)+\frac{1}{4^{n}} p_{1} .
$$

For $n$ large (such as 123), this probability approximates to

$$
p_{123} \simeq \frac{1}{3}
$$

hence, the probability that I am late is

$$
\frac{1}{2} \frac{1}{3}+\frac{1}{4} \frac{2}{3}=\frac{1}{3} .
$$

2. In any divorce, there is a delicate matter: Who keeps the dog?. Olga and Oleg did not reach an agreement, so they take together the dog for a walk every evening. But they do not talk to each other. Each one put a different leash on the dog, one meter long, and they always keep a distance of one meter between them when walking. What is the surface in which the dog can move freely?.
Solution: If $O_{1}$ is Olga's position, and $O_{2}$ is that of Oleg, supposing that the dog is leashed only to Olga, he could move inside a circle of radius $\pi$. The same would happen if he were leashed only to Oleg, see the figure (where the five segments all have length 1 m ).


We want to compute the area of the intersection of the two circles. This is very difficult to do directly, but we can take the 'overlap and substract' approach: The area of the rhombus $O_{1} A O_{2} B$ can be computed with elementary formulas (it is twice the area of one of the equilateral triangles with sides equal to 1 ), and is $\sqrt{3} / 2$. The area of the circular sector $O_{1} A B$ can be computed also easily: as the area of the whole circle is $\pi$, the portion comprised in the circular sector of central angle $\theta$ (in radians) is

$$
A=\pi \frac{\theta}{2 \pi}=\frac{\theta}{2}
$$

In our case, as the central angle is determined by an equilateral triangle, $\theta=2 \pi / 3$, so the area of the circular sector $O_{1} A B$ is $\pi / 3$. The same result is obtained for the area of the circular sector $O_{2} A B$. Thus, the area of the
region given by the intersection of the two circles is (in $m^{2}$ )

$$
2 \frac{\pi}{3}-\frac{\sqrt{3}}{2} \simeq 1.22837
$$

Figure 1 shows how to do this in GeoGebra. Notice the value of Doggy'sArea, computed as in the command line.


Figure 1: GeoGebra construction.

