PROBLEM CORNER

Wei-Chi YANG
wyang@radford.edu
Department of Mathematics and Statistics
Radford University, Radford, VA 24142

In view of problems posted at [5], we post the corresponding problems in 3D.
Example 1 We are given two concentric spheres centered at $O=(0,0,0)$ of radii of a and b (with $a<b$) respectively. See Figure 12, that is generated by GInMA [1] below. The unit sphere is depicted in blue and the sphere of radius 2 is the one in yellow. We are given a moving point A on the unit sphere and extend the ray $O A$ to intersect the outer sphere at a point B. Next, we project point B onto the plane E (in purple), which is a plane that passes through A and is parallel to the xy plane. Denote by P the projection of point B in E. (In other words, the vector $A P$ is perpendicular to the normal vector of the plane E.) Find the locus for the point P. Find the point B that will yield the maximum area for the triangle $A P B$.

Figure 1. Generating an ellipsoid from two concentric spheres.

We write $A=\left(A_{x}, A_{y}, A_{z}\right), B=\left(B_{x}, B_{y}, B_{z}\right)$, and let $P=\left(P_{x}, P_{y}, P_{z}\right)$ be the locus point. We introduce the spherical coordinate system by letting φ the angle between $O B$ and the positive z-axis, and the angle θ to be the angle between the projection of $O B$ onto the $x y$-plane and the positive x-axis. If we let $a=O A$ and $b=O B$, then we see that $B_{z}=b \cos \varphi, B_{x}=$ $b \sin \varphi \cos \theta$ and $B_{y}=b \sin \varphi \sin \theta$. We note that $P_{z}=A_{z}=a \cos \varphi, P_{x}=B_{x}=b \sin \varphi \cos \theta$ and $P_{y}=B_{y}=b \sin \varphi \sin \theta$. It shows that the locus surface in this case is an ellipsoid of the form

$$
\frac{P_{x}^{2}}{b^{2}}+\frac{P_{y}^{2}}{b^{2}}+\frac{P_{z}^{2}}{a^{2}}=1
$$

We may interpret part (a), finding the locus surface, as one way of constructing an ellipsoid as stated in [3]. We construct the locus surface in green as seen in Figure 1 with the help of [1].

In order to generalize the idea of obtaining a locus through perpendicular projections, we replace the outer ellipsoid in Exercise 9 with another surface that encloses a sphere of a given radius. We consider the following cardioid surface below:

Example 2 We are given a sphere centered at $O=(0,0)$ with radius of r_{0}, and the cardioid surface S, by rotating $[x(t), y(t)]=[a(1-\cos t) \cos t+a, a(1-\cos t) \sin t]$, where $t \in[0,2 \pi]$, around the x-axis. Let A be a moving point on the sphere and we extend the ray $O A$ to intersect the outer cardioid surface at a point B. Next, we project point B onto the plane E, which is a plane that passes through A and is parallel to the $x y$ plane. Denote by P the projection of point B in E. In other words, the vector $A P$ is perpendicular to the normal vector of the plane E. Find the locus for the point P. (See Figures 2(a)-2(c))

Figure 2(a) A sphere, Figure 2(b) Locus cardioidal surface and surface when the point locus

A varies

Figure 2(c) Locus
generated by MAPLE

We note that the cardioid surface can be written as $[x(t), y(t) \cos \varphi, y(t) \sin \varphi]$, where $t \in$ $[0,2 \pi]$ and $\varphi \in[0, \pi]$. As we have seen in [5] the locus for the two dimensional cardioid $[x(t), y(t)]=[a(1-\cos t) \cos t+a, a(1-\cos t) \sin t]$ is

$$
\left[x^{*}(t), y^{*}(t)\right]=\left[a\left(\sin ^{2} t+\cos t\right), r_{0}\left(\frac{\sin t(1-\cos t)}{\sqrt{2-\cos ^{2} t}}\right)\right],
$$

where $t \in[0,2 \pi]$. Thanks to symmetry, the locus surface for the cardioid surface is

$$
\left[x^{*}(t), y^{*}(t) \cos \varphi, y^{*}(t) \sin \varphi\right] .
$$

In Figures 2(a) and 2(b), with the aid of GInMA [1], we plotted various views of cardioid surfaces together with the enclosed spheres and respective locus surfaces. We also verified the locus surface analytically with [4] when $a=2$ and $r_{0}=1$ as displayed in Figure 2(c).

References

[1] Geometry in Mathematical Arts (GInMA): A Dynamic Geometry System, see http://deoma-cmd.ru/en/Products/Geometry/GInMA.aspx.
[2] Geometry Expression, see http://www.geometryexpressions.com/.
[3] Sir William R. Hamilton, On the Construction of the Ellipsoid by two Sliding Spheres, Proceedings of the Royal Irish Academy, vol. 4 (1850), p. 341-342. https://www.emis.de/classics/Hamilton/Sliding.pdf.
[4] Maple: A product of Maplesoft, see http://maplesoft.com/.
[5] Problem Corner from the Electronic Journal of Mathematics and Technology, February 2019.
[6] Yang, W.-C. See Graphs. Find Equations. Myth or Reality? (pp. page 25-38). Proceedings of the 20th ATCM, the electronic copy can be found at this URL: http://atcm.mathandtech.org/EP2015/invited/2.pdf, ISBN:978-0-9821164-9-4 (hard copy), ISSN 1940-4204 (online version), Mathematics and Technology LLC.

