PROBLEM CORNER

Provided by Lajos Szilassi and Zoltán Kovács, University of Szeged and Linz School of Education, E-mail: szilassi@jgypk.u-szeged.hu and zoltan@geogebra.org

Consider the unit circle and its inscribed regular hendecagon $A_{1} A_{2} A_{3} \ldots A_{10} A_{11}$.

Problem 1

Compute the product $\left|A_{1} A_{2}\right| \cdot\left|A_{1} A_{3}\right| \cdots\left|A_{1} A_{11}\right|$.

Figure 1 - a regular hendecagon and its diagonals

SOLUTION

Consider the complex plane. Without loss of generality we can assume that $A_{1}=1$. Translate the vertices of the hendecagon by one unit to the left. Now they are lying on a circle with center-1and radius 1 , and the new position of A_{1} is $A_{1}{ }^{\prime}=0$.So the translated vertices are the complex roots of the equation $(x+1)^{11}-1=0$.After expanding the left hand side we learn that it is of form $x^{11}+\cdots+11 x$. By using Viète's formula according to the term11xit is clear that the sum of all products of the complex roots that contain exactly 10 factors, must be $\frac{11}{1}=11$. Since all but one such products are 0 (because 0 is among the complex roots), we obtain that the product of the nonzero roots is 11 . On the other hand, $\left|A_{1} A_{2}\right| \cdot\left|A_{1} A_{3}\right| \cdots\left|A_{1} A_{11}\right|=\left|A_{1}{ }^{\prime} A_{2}{ }^{\prime}\right|$. $\left|A^{\prime}{ }_{1} A^{\prime}{ }_{3}\right| \cdots\left|A_{1}{ }^{\prime} A_{11}{ }^{\prime}\right|=\left|A_{2}{ }^{\prime}\right| \cdot\left|A_{3}{ }^{\prime}\right| \cdots\left|A_{11}{ }^{\prime}\right|=|11|$ that is 11.
Remark: The output of the GeoGebra CAS command
Numeric $\left(\operatorname{Product}\left((\cos (\mathbf{2} \pi / \mathbf{1 1})+\boldsymbol{i} \sin (\mathbf{2 \pi} / \mathbf{1 1}))^{\wedge} \boldsymbol{k}-\mathbf{1}, \boldsymbol{k}, \mathbf{1}, \mathbf{1 0}\right)\right)$ allows us to make a conjecture that the product is 11 . This computation cannot be achieved here symbolically, but we can still use another formulation. Namely,
Eliminate($\left.\left\{\operatorname{Product}\left(z^{\wedge} \boldsymbol{k} \mathbf{- 1}, \boldsymbol{k}, \mathbf{1}, \mathbf{1 0}\right)-\boldsymbol{p}, \boldsymbol{z}^{\wedge} \mathbf{1 1}=\mathbf{1}\right\},\{z\}\right)$ delivers $\left\{-p^{2}+11 p\right\}$ that implies that the product is either 0 or 11 .

Problem 2

Can you prove that the diagonals $A_{1} A_{5}, A_{2} A_{9}$ and $A_{3} A_{11}$ are concurrent?

SOLUTION

It cannot be proven since this statement is false.
A closer look on the figure gives a visual evidence.

Figure 2 - the diagonals are not concurrent

We can also provide a symbolic proof that denies the statement.
Without loss of generality we can assume that $A_{1}=(0,0), A_{2}=(1,0)$, and let us denote the coordinates of A_{k} by (x_{k}, y_{k}) for $k=3, \ldots, 11$. In addition, denote the exact value of $\cos \frac{2 \pi}{11}$ by x and $\sin \frac{2 \pi}{11}$ by y. Now we can state that $\binom{x_{k}}{y_{k}}-\binom{x_{k-1}}{y_{k-1}}=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)$. $\left(\binom{x_{k-1}}{y_{k-1}}-\binom{x_{k-2}}{y_{k-2}}\right.$, for $k=3, \ldots, 11 . x$ and y can be expressed by the algebraic equations $32 x^{5}+16 x^{4}-32 x^{3}-12 x^{2}+6 x+1=0$ and $x^{2}+y^{2}=1$. (See Watkins, W. and Zeitlin, J.: The minimal polynomial of $\cos (2 \pi / \mathrm{n})$ in The American Mathematical Monthly 100(5):471-474 (1993) for more explanation on the quintic formula.) Also, if there is a point $P=(a, b)$ such that the points
$A_{1}, A_{5}, P, A_{2}, A_{9}, P$ and A_{3}, A_{11}, P are collinear, respectively, then the following equations must also be true: $\left|\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{5} & y_{5} & 1 \\ a & b & 1\end{array}\right|=0,\left|\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{5} & y_{5} & 1 \\ a & b & 1\end{array}\right|=0$ and $\left|\begin{array}{ccc}x_{3} & y_{3} & 1 \\ x_{11} & y_{11} & 1 \\ a & b & 1\end{array}\right|=0$.
Finally, the GeoGebra command Eliminate $\left(\left\{x_{-} 1=0, y_{-} 1=0, x_{-} 2=1, y_{-} 2=0, x_{-} 3=\right.\right.$ $-x y_{-} 2+x_{-} 2+x x_{-} 2+y y_{-} 1-x x_{-} 1, y_{-} 3=y_{-} 2+x y_{-} 2+y x_{-} 2-x y_{-} 1-y x_{-} 1, x_{-} 4$ $=-x y_{-} 3+x_{-} 3+x x_{-} 3+y y_{-} 2-x x_{-} 2, y_{-} 4=y_{-} 3+x y_{-} 3+y x_{-} 3-x y_{-} 2-y x_{-} 2$, $x_{-} 5=-x y_{-} 4+x_{-} 4+x x_{-} 4+y y_{-} 3-x x_{-} 3, y_{-} 5=y_{-} 4+x y_{-} 4+y x_{-} 4-x y_{-} 3-y$ $x_{-} 3, x_{-} 6=-x y_{-} 5+x_{-} 5+x x_{-} 5+y y_{-} 4-x x_{-} 4, y_{-} 6=y_{-} 5+x y_{-} 5+y x_{-} 5-x y_{-} 4-$ $y x_{-} 4, x_{-} 7=-x y_{-} 6+x_{-} 6+x x_{-} 6+y y_{-} 5-x x_{-} 5, y_{-} 7=y_{-} 6+x y_{-} 6+y x_{-} 6-x y_{-} 5$ $-y x_{-} 5, x_{-} 8=-x y_{-} 7+x_{-} 7+x x_{-} 7+y y_{-} 6-x x_{-} 6, y_{-} 8=y_{-} 7+x y_{-} 7+y x_{-} 7-x$ $y_{-} 6-y x_{-} 6, x_{-} 9=-x y_{-} 8+x_{-} 8+x x_{-} 8+y y_{-} 7-x x_{-} 7, y_{-} 9=y_{-} 8+x y_{-} 8+y x_{-} 8-$ $x y_{-} 7-y x_{-} 7, x_{-}\{10\}=-x y_{-} 9+x_{-} 9+x x_{-} 9+y y_{-} 8-x x_{-} 8, y_{-}\{10\}=y_{-} 9+x y_{-} 9+$ $y x_{-} 9-x y_{-} 8-y x_{-} 8, x_{-}\{11\}=-x y_{-}\{10\}+x_{-}\{10\}+x x_{-}\{10\}+y y_{-} 9-x x_{-} 9$, $y_{-}\{11\}=y_{-}\{10\}+x y_{-}\{10\}+y x_{-}\{10\}-x y_{-} 9-y x_{-} 9,32 x^{\wedge} 5+16 x^{\wedge} 4-32 x^{\wedge} 3-$ $12 x^{\wedge} 2+6 x+1=0, x^{\wedge} 2+y^{\wedge} 2=1$, Determinant $\left(\left\{\left\{x_{-} 1, y_{-} 1,1\right\},\left\{x_{-} 5, y_{-} 5,1\right\},\{a, b, 1\}\right\}\right)$,
Determinant $\left(\left\{\left\{x_{-} 2, y_{-} 2,1\right\},\left\{x_{-} 9, y_{-} 9,1\right\},\{a, b, 1\}\right\}\right)$,
$\left.\left.\operatorname{Determinant}\left(\left\{\left\{x_{-} \mathbf{3}, \boldsymbol{y}_{-} \mathbf{3}, \mathbf{1}\right\},\left\{x_{-}\{\mathbf{1 1}\}, y_{-}\{\mathbf{1 1}\}, \mathbf{1}\right\},\{a, b, \mathbf{1}\}\right\}\right)\right\},\{a, b\}\right)$ gives $\{1\}$ as output which means that the equation system is equivalent to the equation $0=1$. This contradiction shows the falsity of the statement.

Alternatively, instead of Eliminate, the Solve command can also be used. In that case the empty output set implies the same conclusion.

