PROBLEM CORNER

Provided by Zoltán Kovács and Edith Steininger, Linz School of Education, E-mail: edsteininger@eduhi.at and zoltan@geogebra.org

Problem 1

Little John suggests a new method on constructing a regular 13-gon by using a compass and a ruler (see Figure 1):

1. Draw a circle c of radius 100 mm .
2. Choose an arbitrary point A on circle c.
3. Draw a circle d of radius 187 mm with center A.
4. \quad Mark the intersection points B and M of circles c and d.
5. Draw a circle e of radius 187 mm with center B.
6. Mark the other intersection point C of circles c and e.
7. Draw a circle f of radius 187 mm with center C.
8. Mark the other intersection point D of circles c and f.
9. And so on, mark further intersection points E, F, G, H, I, J, K and L.
10. Now AIDLGBJEMHCKF is a regular 13-gon.

We have the feeling that this cannot be accurate. Why? Explain the situation.

Figure 1 - Little John's method to construct a regular 13-gon

Solution

According to the Gauss-Wantzel theorem (see https://en.wikipedia.org/wiki/Constructible_polygon) it is impossible to construct a regular 13-gon by using compass and ruler. The number 13 is a prime but not of the form

On the other hand, the ratio of the radius and the s-th diagonal of a regular n-gon can be computed with the formula $\sqrt{\left(1-\cos \left(\frac{2 \cdot s \cdot \pi}{n}\right)\right)^{2}+\sin \left(\frac{2 \cdot s \cdot \pi}{n}\right)^{2}}$ This computation can be derived by considering the unit circle and an inscribed regular n-gon $A_{0} A_{1} \ldots A_{n-1}$, by letting $A_{0}=(1,0)$, and projecting A_{s} on the x-axis to obtain point X_{s}, and finally considering the right triangle $A_{0} A_{s} X_{s}$ and using the Pythagorean theorem to express $A_{0} A_{s}$.
Putting $s=5, n=13$ in the formula we obtain 1.870032... By considering this number as a ratio, it is very close to $187 / 100$. Hence, Little John's method finds every $5^{\text {th }}$ diagonal in an almost-regular 13-gon. including side lengths of 47.91 and 47.79 mm , for 8 and 5 sides, respectively (see also a GeoGebra applet at
https://www.geogebra.org $/ \mathrm{m} / \mathrm{sdkhmwhp}$ for further reference). Their difference is significantly less than 1 mm , or, in other words, it is below 0.25%.

Problem 2

Assume we would like to use Little John's method to construct exact regular n-gons by considering two numbers as input radii, r_{1} and r_{2} (in Problem 1, $r_{1}=100, r_{2}=187$, $n=13$). Find all natural numbers n and all associated integer numbers r_{1} and r_{2} that indeed produce an exact regular n-gon with this method.

Solution

We say that two non-zero real numbers a and b are commensurable if their ratio a / b is a rational number.

We are going to use Vincenzi's theorem that claims that, for a regular n-gon, all pairs of diagonals are
(1) either congruent
(2) or incommensurable if and only if 6 does not divide n; in this second case the diagonals d_{1} and d_{2} are commensurable if and only if $d_{1}=2 d_{2}$, where d_{1} is a diagonal of maximum length.
(For a proof see https://doi.org/10.1007/s00013-020-01477-w.) We are going to conclude that the only solution is $r_{1}=r_{2}$ where both radii are the same (but arbitrary) integers. Little John's method produces an exact regular hexagon in such cases.

Let us assume that for a given pair of integer numbers r_{1} and r_{2}, Little John's method produces a regular n-gon. We distinguish between two cases:
(a) $\quad n$ is even. In this case, r_{1} is the half of the diameter which is a diagonal of the n-gon. Now, $2 r_{1}$ and r_{2} are the lengths of a pair of diagonals in the n-gon and they are commensurable. Here there are two cases, according to Vincenzi's theorem:
i. These diagonals are congruent. That is, $2 r_{1}=r_{2}$, but in this case Little John's method produces a " 2 -gon" which has no geometrical meaning.
ii. These diagonals are not congruent, n is a multiple of 6, and $2 r_{1}=2 r_{2}$. This implies $r_{1}=r_{2}$ and Little John's method produces a regular hexagon.
(b) $\quad n$ is odd. In this case let us consider a regular $2 n$-gon by extending the produced n-gon in such a way that they share the same circumcircle and every second vertex of the $2 n$-gon is a vertex of the n-gon as well. Clearly, the radius of the circumcircle is $2 r_{1}$. Therefore, in the $2 n$-gon we found two commensurable diagonals of lengths $2 r_{1}$ and r_{2}. According to Vincenzi's theorem, there are two cases:
i. these diagonals are congruent. That is, $2 r_{1}=r_{2}$, but in this case Little John's method produces a " 2 -gon" again, and this has no geometrical meaning.
ii. These diagonals are not congruent, $2 n$ is a multiple of 6 , and $2 r_{1}=2 r_{2}$. This implies $r_{1}=r_{2}$ and Little John's method would produce a regular hexagon, but in this case n cannot be odd (so this case cannot occur).

At the end of the day, we can learn that only the case (a) ii. can occur. This confirms our statement: Little John's method can construct only a regular hexagon in an accurate way, and this is the same as the well-known method that is widely used in schools as well.

