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Problem 1 We suppose that we have n white balls and n black balls which we are going to
place in two urns A and B in any way we please, as long as at least one ball is placed into
each urn. After this has been done, a second person walks into the room and selects one ball at
random. Our problem is to maximize the probability that this person draws a white ball.

Solution: We suppose that the distribution of the balls in the urns A and B is as described
in the following table:

A B
Number of White Balls x n− x
Number of Black Balls y n− y

If P (x, y, n) is the probability that a single ball drawn at random will be white then

P (x, y, n) =
1

2

(
x

x+ y
+

n− x
2n− x− y

)
.

From now on we shall assume that n = 50. We begin our study of the function by looking
at the following table which shows the values of P (x, y, 50) at a few selected points (x, y) .

P (0, 1, 50) = . 25253 P (1, 0, 50) = . 74747
P (1, 1, 50) = . 5 P (2, 1, 50) = . 58076
P (1, 2, 50) = . 41924 P (25, 25, 50) = . 5
P (50, 1, 50) = . 4902 P (1, 50, 50) = . 5098
P (50, 0, 50) = . 4902 P (50, 49, 50) = . 25253
P (49, 50, 50) = . 74747 P (49, 49, 50) = . 5

To solve the problem we need to find the maximum value of the expression P (x, y, 50) as
the point (x, y) varies through the rectangle [0, 50] × [0, 50] from which the points (0, 0) and
(50, 50) have been removed. If we sketch the graph z = P (x, y, 50) then we obtain the following
surface
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From the looks of this surface it seems unlikely that the maximum value of z will be achieved
at a critical point. The maximum appears to be at the left or right extremities of the figure.
As a matter of fact, if we point at the equations

∂

∂x
P (x, y, 50) = 0

∂

∂y
P (x, y, 50) = 0

and after solvving these equations, we obtain

{y = 25, x = 25} .

As we have already seen, the maximum value of z does not occur at the point (25, 25) .
We now examine the boundary behavior of the function. There are four cases to consider

The Case x = 0 and 1 ≤ y ≤ 50 We define g (y) = P (0, y, 50) for 1 ≤ y ≤ 50.Since

g (y) =
25

100− y

for each y we see that the maximum value of g (y) is g (50) = 1
2
.

The Case y = 0 and 1 ≤ x ≤ 50 We define g (x) = P (x, 0, 50) for 1 ≤ x ≤ 50. Since

g (x) =
1

2
+
1

2

50− x
100− x = 1−

25

100− x

for each x, we see that the maximum value of this function is g (1) = . 74747.

The Case x = 50 and 0 ≤ y ≤ 49 We define g (y) = P (50, y, 50) for 0 ≤ y ≤ 49. Since

g (y) =
25

50 + y

for each y, we see that the maximum value of this function is g (0) = .5.

The Case y = 50 and 0 ≤ x ≤ 49 We define g (x) = P (x, 50, 50) for 0 ≤ x ≤ 49. Since

g (x) = 1− 50

x+ 50

for each x, we see that the maximum value of this function is g (49) = .74747.
Some of the variations suggested here may be suitable for presentation in the

classroom. Others may be suitable for student projects [1].

1. Repeat the preceding probability problem assuming that the selection of the ball will be
made in such a way that the probability that the selection will be made from urn A is 1

3

and the probability that the selection will be made from urn B is 2
3
.



2. Extend the preceding variation to the general case in which the probability of selecting
a ball from urn A is some number γ satisfying 0 < γ < 1 and the probability of selecting
the ball from urn B is 1− γ.

3. Investigate the problem of determining how the balls should be placed in order to minimize
the probability that the selected ball be white. Of course, this is simply the problem of
maximizing the probability that a black ball be selected.

4. Suppose that the selection of the ball results in payoffs as described in the following table

From urn A From urn B
white ball αA αB
black ball βA βB

.

Study the payoffs that result from different placement of the balls.

5. Determine the maximum value of the expression P (x, k, n) where k is a given integer
satisfying 1 ≤ k ≤ n− 1. Find the value xk of x at which this maximum occurs. You will
find that

xk =

√
k(2n− k)− k

√
n− k√

n− k +
√
k

and that the maximum value of P (x, k, n) is

P (xk, k, n) =
3n− 2

√
(k (n− k))
4n

The next Problem can be done by using the Green’s Theorem when one learns the mul-
tivariable calculus. Try to think how you may solve the problem without using the Green’s
Theorem.

Problem 2 (See [2]) Suppose we are given two curves, one is cardioid of C1 = [2 cos(t) −
cos(2t), 2 sin(t) − sin(2t)] (shown in green in Figure below), where t ∈ [0, 2π], and the circle
C2 = [0.5 + 3 cos(t), 0.5 + 3 sin(t)], (shwon in red in Figure below), where t ∈ [0, 2π]. We shall
find the area bounded by the following area: Start at the point B on the green curve C1 until
the point A and then follow the red curve C2 back to the point B.

Figure. Intersection between C1 and C2.



Solution:
We need some background information that can be find the area bounded by a curve and a

slanted line, see [2]. We state the theorems as follows:

Theorem 3 Let C be the smooth curve, w(t) = [x(t), y(t)], where t1 ≤ t ≤ t2. Let R be
the region bounded by C, by the line y = mx + b and by the perpendiculars to the line from
(x(t1), y(t1)) and (x(t2), y(t2)). Then the area of R is given by

1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt. (1)

The Green’s Theorem in our discussion can be summarized as follows:

Theorem 4 Let C be the smooth curve, w(t) = [x(t), y(t)], where t1 ≤ t ≤ t2. Let R be
the region bounded by C, by the line y = mx + b and by the perpendiculars to the line from
(x(t1), y(t1)) and (x(t2), y(t2)). If P (x, y) =

y
2
and Q(x, y) = x

2
, then∫

C

P dx+Qdy =

∫ ∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA (2)

=
1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt.

1. Step 1. First, we find the intersections for these two curves at

A = (.2046062939,−2.485421672) and B = (−2.108615230, 1.981595956)

respectively.

2. Step 2. We calculate the area bounded by C1 and line segment AB.If we travel along C1
from B to A, the angle is from t = 4.402664587 to t = 2.574088482.We apply the area
formula to compute the area bounded C1 and the line equation AB :

y = −1.931x− 2.09,

and obtain

1

1 +m2

∫ t2

t1

|(−x(t)m+ y(t)− b) (x′(t) + y′(t)m)| dt (3)

=
1

1 + (−1.931)2
∫ 2.574088482

4.402664587

((cos 2t− 2 cos t)(−1.931) + 2 sin t− sin 2t+ 2.09) ·
(−2 sin t+ 2 sin 2t+ (2 cos t− 2 cos 2t)(−1.931)) dt

= 7.538433161.

3. Step 3. We next calculate the area bounded by C2 and the line segment AB. If we travel
along C2 from A to B,the angle is from t = 2.625063229 to t = 4.613764607.We apply
the area formula to compute the area bounded C1 and the line equation AB :

y = −1.931x− 2.09,



and obtain

1

1 +m2

∫ t2

t1

|(−x(t)m+ y(t)− b) (x′(t) + y′(t)m)| dt (4)

=
1

1 + (−1.931)2
∫ 4.613764607

2.625063229

((−0.5− 3 cos t)(−1.931) + 0.5 + 3 sin t+ 2.09) ·
(−3 sin t+ 3 cos t)(−1.931)) dt

= −4.836961037.

Therefore, the total net area bounded by C1 and C2 is 2.701472124.

Remark 5 A quick check using Green’s Theorem on the curve C = C∗1 ∪C∗2 ,where C∗1 is when
we travel along C1 from B to A and C∗2 is when we travel along C2 from A to B, we get the
answer of 2.701472124.

1

2

∫
C∗1

(x(t)y′(t)− y(t)x′(t)) dt+ 1
2

∫
C∗2

(x(t)y′(t)− y(t)x′(t)) dt

= −9.955568535 + 7.254096410 = −2.701472125.

We note that the Green’Theorem produces a negative area if the curve travels in clock-wise
direction.

References

[1] Yang, W.-C., Lin, C.-C. & Thompson, S. "New Approaches to a Classical Problem", Inter-
national Journal of Mathematical Education in Science and Technology, 1998, Vol. 29, No.
4, pp613-617.

[2] Yang, W.-C. & Lo, M.-L. "Finding signed Areas and Volumes inspired by Technology",
Electronic Journal of Mathematics and Technology (eJMT), ISSN 1933-2823, Issue 2, Vol.
2, June 2008.


