
Solutions to Problems from October 2011 

 

Question 1 (2007, Jiangsu, China)  Let 𝑓(𝑥) = log2[2𝑥2 + (𝑚 + 3)𝑥 + 2𝑚].  It is known 

that 𝑓(𝑥) ∈ (−∞, ∞).  Find the range of the parameter 𝑚.  Extend your results to solving 

similar problems. 

 

Solution. In Figure 1 below, the dashed curve shows that there is no point of intersection of the 𝑥-

axis and the curve 𝑔(𝑥) = 2𝑥2 + (𝑚 + 3)𝑥 + 2𝑚 when 𝑚 = 1.5.  So for 𝑚 = 1.5, let 𝑡0 be the 

point such that 𝑔(𝑡0) is the absolute minimum which is positive. Then the range of the function 

𝑓(𝑥) is [𝑓(𝑡0), ∞), which is a subset of ℝ but not equal to ℝ. 

 

        

Figure 1 

In Figure 2, the dashed curve shows that there is only one intersection point of the 𝑥-axis and 

the curve 𝑔(𝑥) = 2𝑥2 + (𝑚 + 3)𝑥 + 2𝑚 when 𝑚 = 1.0. In this case, the function 𝑔(𝑥) has the 

minimum value 0. So the values of 𝑔(𝑥) need to be positive in order to make the function 𝑓(𝑥) 

well defined. Therefore the range of the function 𝑓(𝑥) is ℝ when 𝑚 = 1.0. 

 

 

Figure 2 

In Figure 3, the dashed curve shows that there is only one intersection point of the 𝑥-axis and 

the curve 𝑔(𝑥) = 2𝑥2 + (𝑚 + 3)𝑥 + 2𝑚 when 𝑚 = −0.7. So when 𝑚 = −0.7, the absolute 

minimum of 𝑔(𝑥) is a negative number.  As before, the values of 𝑔(𝑥) need to be positive to make 

the function 𝑓(𝑥) well defined. Therefore the range of the function 𝑓(𝑥) is ℝ when 𝑚 = −0.7. 

    



 

Figure 3 

From the discussion above，we can see that that the range of the function 𝑓(𝑥) is ℝ 

 only when there is/are intersection point(s) of the 𝑥-axis and the curve 𝑔(𝑥) = 2𝑥2 +

(𝑚 + 3)𝑥 + 2𝑚 or, in other words, when the discriminant ∆= (𝑚 + 3)2 − 4 × 2 × 2𝑚 ≥ 0, or in 

other words when 𝑚 ≤ 1 or 𝑚 ≥ 9, the range of the function 𝑓(𝑥) is ℝ. 

 

Question 2 (2009, Beijing, China)  Let the point 𝑃 be on the line 𝑙 ∶  𝑦 = 𝑥 − 1, and let 𝐴 and 

𝐵 be the two points of intersection of the parabola 𝑦 = 𝑥2 and a straight line passing through 

𝑃.  We call 𝑃 an A -point if |𝑃𝐴| = |𝐴𝐵|.  Which one of the following statements is correct? 

 

A. All of the points on the line 𝑙 ∶  𝑦 = 𝑥 − 1 are A –points. 

B. Only finitely many points on line 𝑙: 𝑦 = 𝑥 − 1 can be called A –points. 

C. Not all of the points on line 𝑙: 𝑦 = 𝑥 − 1 are A –points. 

D. Infinitely many points, but not all of the points, on line 𝑙 ∶  𝑦 = 𝑥 − 1 can be called 

 A –points. 

 

Solution. For any point 𝑃 on the line 𝑦 = 𝑥 − 1, we randomly draw a line passing through 

𝑃.  If the line intersects the parabola 𝑦 = 𝑥2, we define the intersection point closer to 𝑃 as point 

𝐴, as shown in Figure 4 below. Define 𝐵 to be the point on line 𝑃𝐴 with |𝑃𝐴| = |𝐴𝐵|. 

 

                                                          Figure 4 

 

For any point 𝑃 on the straight line 𝑦 = 𝑥 − 1, as shown in Figure 4, there must exist a point 

𝐴 as defined above such that point 𝐵 is “above” the parabola, or 𝐵 is in the region 𝑦 > 𝑥2 as 

shown in Figure 4. 

On the other hand, there must also exist another point 𝐴 with the corresponding point 𝐵 

“under” the parabola, or in other words located in the region 𝑦 < 𝑥2 as shown in Figure 5.  



 

 

                                                        Figure 5 

 

 

                                                         Figure 6 

 

Since the parabola is a continuous curve, for any point 𝑃 on the straight line 𝑦 = x − 1, there 

must exist a point 𝐴 on the parabola 𝑦 = 𝑥2 which makes the point 𝐵 settle down exactly on the 

parabola as shown in Figure 6. 

Therefore, the correct answer is “A”. 

 

Question 3 (2006, Hubei China)  Consider the following four statements about the equation 

(𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0 with variable 𝑥 and constant 𝑘. 

 

(i) There is a real number k  that makes the equation have two different real roots. 

(ii) There is a real number k  that makes the equation have four different real roots. 

(iii) There is a real number k  that makes the equation have five different real roots. 

(iv) There is a real number k  that makes the equation have eight different real roots. 

 

How many of these statements are false?  

 

A. 0 

B. 1 

C. 2 

D. 3 

 

Solution.  Let 𝑦 = |𝑥2 − 1|.  Then 𝑦 is the root of the equation 𝑥2 − 𝑥 + 𝑘 = 0.  First of all, we 

discuss how many roots the equation 𝑦 = |𝑥2 − 1| has as 𝑦 varies.  



 

Figure 7 

Figure 7 shows two curves: the solid one represents the function 𝑦 = |𝑥2 − 1| and the dotted 

line is the graph of function 𝑦 = 𝑡. So the number of the intersection point(s) of the two curves 

illustrates the number of the roots of the equation 𝑦 = 𝑡. So we have the following cases. 

Case 1  When 𝑡 > 1, the equation 𝑦 = 𝑡 has two different real roots as in Figure 7. 

Case 2  When 𝑡 = 1, the equation 𝑦 = 𝑡 has three different real roots as in Figure 8. 

Case 3  When 0 < 𝑡 < 1, the equation 𝑦 = 𝑡 has four different real roots as in Figure 9. 

Case 4 When 𝑡 = 0, the equation 𝑦 = 𝑡 has different real roots as in Figure 10. 

Case 5 When 𝑡 < 0, the equation 𝑦 = 𝑡 has no real solution as in Figure 11. 
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Next we consider the equation  = 𝑥2 − 𝑥 + 𝑘 with the axis of symmetry 𝑥 = 1
2⁄  and the 

discriminant 𝛥 = 1 − 4𝑘. So we have 

Case a  When 𝛥 < 0, as in Figure 12, the equation  = 𝑥2 − 𝑥 + 𝑘 does not have any real 

root. Therefore the corresponding equation (𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0  does not have a real 

root either. 



                    

                  Figure 12                                         Figure 13 

 

Case b  When ∆ = 0, as in Figure 13, the equation  = 𝑥2 − 𝑥 + 𝑘 has two identical real 

roots 𝑡1 = 𝑡2 = 1
2⁄ . Then the corresponding equation (𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0 has four 

real roots as demonstrated in case 3. 
Case c   When ∆ > 0, the equation  = 𝑥2 − 𝑥 + 𝑘 has two different real roots 𝑡1 and 𝑡2: 

 Case c.1  If 0 < 𝑡1 < 𝑡2 < 1, as in Figure 14, the equation (𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0 

has eight real roots as explained in case 3. 
 Case c.2  If 0 = 𝑡1 < 𝑡2 = 1, as in Figure 15, the equation (𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0 

has five real roots as explained in case 2 and case 4. 
Case c.3  If 𝑡1 < 0 < 1 < 𝑡2, as in Figure 16, the equation (𝑥2 − 1)2 − |𝑥2 − 1| + 𝑘 = 0 

has two real roots as indicated in case 1 and case 5. 
 

           
      Figure 14                                          Figure 15                            Figure 16 

 

So the correct answer is “A”. 

 

The following figures show that when 𝑘 changes, the number of roots of the function curve 

𝑦 = (𝑥2 − 1)
2

− |𝑥2 − 1| + 𝑘 = 0 also varies. 

 

 
Figure 17 
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These problems are excerpts from past College Entrance exams from China and are being 

provided and translated by Chuan-Bo Zuo. Mathematics and Technology, LLC and eJMT will not 

be responsible for the copyright issue for obtaining and translating these problems. 


