Problem Corner: Interesting Numerical Differentiation Tidbits

Skip Thompson
Department of Mathematics \& Statistics
Radford University
Radford, VA 24142
thompson@radford.edu

Solutions and Comments

When we calculate the partials of $r(A, B)$ and equate them to 0 , we obtain the linear system

$$
\begin{align*}
& \sum_{i=1}^{n}\left(A f_{i}+B g_{i}-y_{i}\right) f_{i}=0 \tag{1}\\
& \sum_{i=1}^{n}\left(A f_{i}+B g_{i}-y_{i}\right) g_{i}=0 \tag{2}
\end{align*}
$$

where $f_{i}=f\left(x_{i}\right)$ and $g_{i}=g\left(x_{i}\right)$. We rewrite this system as

$$
\begin{align*}
& A \sum_{i=1}^{n} f_{i}^{2}+B \sum_{i=1}^{n} f_{i} g_{i}=\sum_{i=1}^{n} f_{i} y_{i} \tag{3}\\
& A \sum_{i=1}^{n} f_{i} g_{i}+B \sum_{i=1}^{n} g_{i}^{2}=\sum_{i=1}^{n} g_{i} y_{i} . \tag{4}
\end{align*}
$$

Denote by F and G respectively the vectors with components f_{i} and g_{i} and by θ the angle between F and G. The determinant of this system is then $\|F\|^{2}\|G\|^{2}-(F \cdot G)^{2}$ which in turn is equal to $\|F\|^{2}\|G\|^{2}-\|F\|^{2}\|G\|^{2} \cos ^{2}(\theta)$ or $\|F\|^{2}\|G\|^{2} \sin ^{2}(\theta)$. Assuming neither F nor G is the zero vector we see that the determinant is 0 if and only if F and G are parallel so that they differ by a common scalar multiple.

For the forward difference approximations $F_{i}=h_{i}$ and $G_{i}=\frac{1}{h_{i}}$. Thus, $F_{i}=h_{i}^{2} G_{i}$. Since the h_{i} are distinct, this shows that G is not a scalar multiple of F so the two vectors are not parallel. For both centered difference approximations, $F_{i}=h_{i}^{2}>$ and $G_{i}=\frac{1}{h_{i}}$ and we see again that F and G are not parallel. Hence, the corresponding systems of linear equations are nonsingular so that A and B are determined uniquely for each of the three derivative approximations.

For a simple example of singularity, suppose we wish to fit two points (x_{1}, y_{1}) and (x_{2}, y_{2}) with a function of the form $A x^{2}+B x$ where $x_{1} \neq x_{2}$. The determinant of the linear system is $x_{1}^{2} x_{2}^{2}\left(x_{1}-x_{2}\right)^{2}$. The system is singular if, say, $x_{1}=0$. In this case there are an infinite number of parabolas passing through the two points. Note that $F=<0, x_{2}^{2}>$ and $G=<0, x_{2}>$ are parallel since $F=x_{2} G$. If both x_{1} and x_{2} are nonzero the system is nonsingular. This is due to the fact that our fit must also pass through the point $(0,0)$ and there is a unique parabola passing through the three points.

