The Problem Corner (solutions)

José A. Vallejo
Email: jvallejo@fc.uaslp.mx

1. Let us consider a simple optimization problem. Given a function of two variables $z=f(x, y)$, we can search for its extremal points by intersecting its graph with vertical planes, and looking at the resulting curve. Suppose that for each vertical plane passing through the origin, the intersection with the graph of the function is a curve having a minimum at the origin. Is it true that $f(x, y)$ will have a minimum at the origin? Prove it if you think it is true, or give a counterexample otherwise.

Solution: In general, it is false that the function $z=f(x, y)$ will have a minimum. As a counterexample, one can consider the function

$$
\begin{equation*}
f(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right) \tag{1}
\end{equation*}
$$

For any line $y=a x$ with $a \neq 0$, we get the corresponding intersection $z=2 x^{4}-3 a x^{3}+a^{2} x^{2}$, which has a minimum in $x=0$ (that in turn determines the origin, as $y=a x=0$ too), as it is easy to check by taking derivatives.
In the particular case of the section given by $x=0$ we get the parabola $z=y^{2}$, which also has a minimum at the origin.
However, it is clear from (1) that for those non-zero (x, y) such that $y=$ $a x^{2}$ with $1<a<2$, it is $z<0$, and hence $f(x, y)$ can not have a minimum at the origin.
2. A certain sport is played in two halves, and there is the figure of a penalty: a free shot as a consequence of a fault. In analyzing the performance in penalties, the sport section of a newspaper mentions that Team A had a better performance in both halves, so it was overall better. A dissenting reader, Mr. Simpson, writes complaining that the numbers really say that his team (B , of course), was better. Is this possible?
Solution: Yes, the two facts are compatible (and this is a well-known statistical phenomenon called the Simpson's paradox). Consider, for example, the following figures about performance in penalties:

Team	1st Half	2 nd Half
A	5 out of 6	7 out of 19
B	11 out of 14	2 out of 6

It is clear that $5 / 6>11 / 14$, so team A was better in the first half. Also, as $7 / 19>2 / 6$ the team A was better in the second half. However, globally team A had an efficiency of $12 / 25$, while team B had $13 / 20$, with $13 / 20>$ 12/25.

