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Problem 1

Random number generators are widely used in statistical applications for simulating data and
validating statistical methods. Nowadays, nearly all programming languages are equipped
with built-in programs for generating random numbers. The main goal of this problem is
to introduce students with a basic algorithm for generating random numbers from a normal
(bell-shaped) distribution without implementing any existing programs. This procedure works
in two steps.

• Step 1: Generate two numbers U1 and U2 from a uniform distribution that is defined over
[0, 1]. Note that a uniform distribution over [0, 1] is a unit constant function, f(y) = 1
for 0 ≤ y ≤ 1.

• Step 2: Calculate X1 =
√
−2 lnU1 cos(2πU2) and X2 =

√
−2 lnU1 sin(2πU2).

Upon completion, these steps will result in two independent observations, X1 and X2, that
follow a normal distribution with mean = 0 and variance = 1. This algorithm was introduced
by Box and Muller (1958).

The uniform numbers, U1 and U2, required for this algorithm can be generated as follows.
Select two numbers at random from 0, 1, 2, ..., 200 with replacement. If either 0 or 200 is
selected, discard it and select another number. Divide both numbers by 200 (the maximum
possible value). This will yield a pair of independent uniform numbers, U1 and U2, that fall
between 0 and 1. Next, complete step 2 to obtain X1 and X2. Repeat the entire process to
simulate multiple pairs of normal variates. For example, to simulate 100 numbers, one needs
to repeat these steps 50 times. Note that 200 is a reasonable maximum value for the simple
random sampling. However, the performance would be better if a larger value, such as 500,
is used.

Do the following using the algorithm described above.

(a) Sample 100 random numbers from a normal distribution that has mean = 0 and
variance = 1.

(b) Construct a histogram using the 100 sample points. Is the distribution bell shaped?

(c) Write your own program to implement the algorithm. Generate 1000 random numbers
using your program.

Solution: We first generate U1 and U2 using the given instructions and then complete step
2. After repeating both steps 50 times, we obtain 100 data points that are observed from a



normal distribution with mean = 0 and variance = 1. A histogram of the generated data is
shown in Figure 1 (left). This shows a bell-shaped distribution as expected. To verify whether
data are generated from a normal distribution, we provide an additional graph (Q-Q plot) in
Figure 1 (right). The Q-Q plot shows a straight line pattern, indicating that the data indeed
follow a normal distribution. We do the entire calculation in R; see the R codes below. A
general R function that implements the Box-Muller algorithm is also provided for users.
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Figure 1: Histogram (left) and normal Q-Q plot (right) of the 100 normal random numbers
generated based on the Box-Muller algorithm.

Problem 2

Random numbers can be used to easily approximate areas under any (complicated) functions.

For example, the area under the quadratic function f(y) = y2 over [0, 1] is
∫ 1

0
f(y)dy =∫ 1

0
y2dy = 1/3 (exact result). This can be approximated as follows. Generate 100 random

numbers from a uniform distribution that is defined over [0, 1] by simple random sampling
as described in Problem 1. Substitute each of the 100 numbers for y in f(y) = y2 to get
100 values of the function and then take their average. This average should be a reasonable
approximate for

∫ 1

0
y2dy and should be close to 1/3. For a more accurate result, use at least

1000 uniform numbers rather than 100.

Use the numerical technique to approximate
∫ 1

0
f(y)dy for each of the following functions.

(a) f(y) = 1√
2π
e−

y2

2 ;

(b) f(y) = y2e−y
2
;

(c) f(y) = 10ye−e
−y

.
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The approximate answers for 2(a), 2(b), and 2(c) are 0.341, 0.189, and 2.336, respectively.
Note that the approximation technique described above is valid only for the unit interval [0, 1].
This can, however, be generalized easily.

Solution: The functions in 2(a)-2(c) are depicted in Figure 2, where the areas that we
are interested in approximating are shaded. Following the given instructions, we first gen-
erate 1000 random numbers from the uniform distribution and then approximate the inte-
grals. To illustrate how this has been accomplished, we now describe our calculation for
2(a). Let U1, U2, ..., U1000 be 1000 uniform variates that we have generated. First, evaluate
f(y) = 1√

2π
e−y

2/2 at y = U1; that is, calculate f(U1) = 1√
2π
e−U

2
1 /2. Continue this to calcu-

late f(U2), f(U3), ..., f(U1000). Finally, take average of f(U1), f(U2), ..., f(U1000). This average
should be close to 0.341. R codes for this implementation are provided below.
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Figure 2: Graphs of the functions in Problem 2. The functions in (a), (b), and (c) are shown
in the left, middle, and right, respectively. Areas under the curve for y ∈ [0, 1] are also shown.
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R codes:

#************************************************#

# R codes for Problem 1 #

#************************************************#

# 1(a)

#

X <- NULL

for(i in 1:50){

U1 <- sample(0:200, 1)/200

U2 <- sample(0:200, 1)/200

X1 <- sqrt( -2*log(U1) )*cos(2*pi*U2)

X2 <- sqrt( -2*log(U1) )*sin(2*pi*U2)

X <- c( X, c(X1,X2) )

}

print( X )

# 1(b):

#

hist(X); qqnorm(X); qqline(X,col=2)

# 1(c): Function to implement the Box-Muller algorithm.

#

rand.norm <- function(n,mx=1000){

X <- NULL

for(i in 1:n){

U1 <- sample(0:mx, 1)/mx

U2 <- sample(0:mx, 1)/mx

X1 <- sqrt( -2*log(U1) )*cos(2*pi*U2)

X2 <- sqrt( -2*log(U1) )*sin(2*pi*U2)

X <- c( X, c(X1,X2) )

}

return(X)

}

# Input: n, mx

# n = Number of repeatitions, each of which generates two numbers.

# mx = Maximum of the simple random sampling for uniform variates.

# Output: X

# X = A vector of two normal random numbers.

# Run this to generate 1000 normal variates:

res <- rand.norm(n=500)

hist(res)

4



#************************************************#

# R codes for Problem 2 #

#************************************************#

# Function to generate uniform numbers.

#

unif <- function(n,mx=1000){

U <- NULL

for(i in 1:n){

U1 <- sample(0:mx, 1)/mx

U2 <- sample(0:mx, 1)/mx

U <- c(U, c(U1,U2))

}

return(U)

}

U <- unif(500); hist(U)

# 2(a):

#

y <- seq(-4,4,.01)

y0 <- seq(0,1,.01)

f <- function(y) exp(-y^2/2)/sqrt(2*pi)

plot(y, f(y),type="l")

polygon(c(0,y0,1),c(0,f(y0),0),col="red")

U <- unif(500); mean( f(U) )

# 2(b):

#

y <- seq(-3.5,3.5,.01)

f <- function(y) (y^2)*exp(-y^2)

plot(y,f(y),type="l")

polygon(c(0,y0,1),c(0,f(y0),0),col="red")

U <- unif(500); mean( f(U) )

# 2(c):

#

y <- seq(0,2,.01)

f <- function(y) (10^y)*exp(-exp(-y))

plot(y,f(y),type="l")

polygon(c(0,y0,1),c(0,f(y0),0),col="red")

U <- unif(500); mean( f(U) )

Note: R is a free programming language widely used for research and applications. R is
available for downloaded at https://www.r-project.org.
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