PROBLEM CORNER

Provided by Jiri Blazek
Department of Mathematics, University of South Bohemia,
E-mail: jirablazek@gmail.com

Problem 1

Consider parallelogram $\mathrm{ABCD},|A B| \neq|B C|$. Let E be the intersection of the perpendicular to the diagonal AC dropped from the point D with the line BC and let F be the foot of the perpendicular from the point B to the line DE . Assuming that the lines CF and AE perpendicular, determine the angle ACB.

Figure 1 - Parallelogram

SOLUTION

The point F is the orthocenter of the triangle AEC , hence AF is perpendicular to BC . As the segments AD and BC are equal and parallel, the diagonal AC is a bisector of the segment DF and the triangle DAF is isosceles. From that follows

$$
\Varangle A C B=\Varangle D A C=\Varangle C A F
$$

Hence $\Varangle A C B=45^{\circ}$.

Problem 2

Consider a triangle $A B C$ and its circumscribed circle k. On the circle choose an arbitrary point P and inside the triangle select an arbitrary point G. Consider circles GAB, GBC, GCA. Denoting $P_{A B}, P_{B C}, P_{C A}$ the inverse images of the P with respect to the circles, prove or answer following statements:
a) Points $P_{A B}, P_{B C}, P_{C A}$ and G lie on a circle C.
b) As P moves along the circle k, the centre of the circle C moves along a line.
c) Determine in the triangle a point $G=G_{L}$ in such a way that the points $P_{A B}$, $P_{B C}, P_{C A}$ and G_{L} are always collinear (we consider a line as a special case of a circle).

Hint: Apply the Simson-Wallace theorem.

Solution

a) Let us start by the Simson-Wallace Theorem [1]:

Let $A B C$ be a triangle and P a point in a plane. If P lies on the triangle's circumcircle, then its images in reflection with respect to the sides of the triangle ABC and the orthocentre of the triangle are collinear - they lie on the so-called Simson line.

Let consider inverse image of the geometrical objects from the task with respect to an arbitrary circle with the centre G. Because the relation "point - inverse circle - image" is preserved by inverse mapping, we can reformulate the problem exactly as a statement of S.-W. theorem: The three circles are mapped to lines, the points $P, P_{A B}, P_{B C}, P_{C A}$ are mapped to points $P^{\prime}, P_{A B}^{\prime}, P_{B C}^{\prime}, P_{C A}^{\prime}$ and the points $, P_{A B}^{\prime}, P_{B C}^{\prime}, P_{C A}^{\prime}$ are reflections of the point P^{\prime} with respect to these lines. Because the point P lies on the circumscribed circle of the inverse image of the triangle ABC , the points $P_{A B}^{\prime}, P_{B C}^{\prime}, P_{C A}^{\prime}$ lie on a Simson line. Further, the image of the point G lies in infinity and hence lies on the line too. As the inverse images of the four points lie on a line, the original points $P_{A B}, P_{B C}, P_{C A}, \mathrm{G}$ must lie on a circle C or on a line, which is a special case of circle.
b) The most straightforward way is to prove that the circle C passes through two fixed points. The first point is obviously G. From the S.-W. theorem, we know that the Simson line passes through the orthocentre H , hence its image - the circle C - passes through the inverse image of H . It is the second point.
c) We will again use the inverse images of the objects from the task: The Simson line passes through the orthocentre H. In order to preserve this line
under mapping, it is necessary $G_{L}=H$, hence G_{L} must be the orthocentre of the image of the original triangle ABC . Consider points A, B and its inverse images A', B'. Let the centrum of an inverse circle be a point G. As is obvious from fig 2, the angles are swapped by the mapping (justification is left to the reader).

Figure 2 - inverse mapping

From that follows that the point G_{L} is the orthocentre of the inverse imagine of the triangle $A B C$ if and only if it is the incentre or excentre of the triangle ABC . As the point G_{L} is inside the triangle, it is its incentre.
[1] - http://home.pf.jcu.cz/~sbml/wp-content/uploads/Skrisovsky_web.pdf

Problem 3

On a circle k are arbitrarily selected points A, B, C, D. Denote the orthocenter of the triangle $A B C$ as H_{D} and analogically introduce the orthocenters $H_{A} H_{B} H_{C}$. Prove that the orthocenters lie on a circle with its radius equal to the radius of the circle k.

SOLUTION

We will solve the problem by means of vectors. Let the center of the k is O and let it be the origin of the coordinate system. It is easy to show that

$$
H_{D}=\vec{A}+\vec{B}+\vec{C}=(\vec{A}+\vec{B}+\vec{C}+\vec{D})-\vec{D}
$$

and that the point H_{D} lies on the circle with the center $S=(\vec{A}+\vec{B}+\vec{C}+\vec{D})$ and radius $R=|\vec{D}|=|\vec{A}|=|\vec{B}|=|\vec{C}|$.
For the other three points we arrive at the same conclusion.

