PROBLEM CORNER

Provided by Daniela Ferrarello, Maria Flavia Mammana, Mario Pennisi, Eugenia Taranto University of Catania, Italy E-mail: <u>mariaflavia.mammana@unict.it</u>

Let Q be a convex quadrilateral with vertices A, B, C, D.

We call edges of Q the four sides and the two diagonals, AB, BC, CD, DA, AC, BD.

Figure 1. The quadrilateral Q

Problem 1

Let M_1 , M_2 , M_3 , M_4 , M_5 , M_6 be the midpoints of the edges AB, BC, CD, DA, AC, BD.

Prove that the segments M_1M_3 , M_2M_4 , M_5M_6 are concurrent in a point G that bisects them all.

Figure 2. Q and the midpoint segments

SOLUTION

In the triangle ABC, the segment M_1M_2 joins the midpoints of the edges AB and BC, then M_1M_2 is parallel to AC and $M_1M_2 = \frac{1}{2}$ AC. Analogously, the segment M_3M_4 is parallel to

AC and $M_3M_4 = \frac{1}{2}$ AC. Therefore, $M_1M_2M_3M_4$ is a parallelogram. The common point G of its diagonals bisects both of them, M_1M_3 and M_2M_4 .

Figure 3. Q and the parallelogram $M_1M_2M_3M_4$

Let us consider different cases on Q.

Case 1. Q does not have any pairs of opposite parallel sides.

In the triangle ABC, the segment M_1M_5 joins the midpoints of the edges AB and AC, then M_1M_5 is parallel to BC and $M_1M_5 = \frac{1}{2}$ BC. Analogously, the segment M_3M_6 is parallel to BC and $M_3M_6 = \frac{1}{2}$ BC. Therefore, $M_1M_5M_3M_6$ is a parallelogram. Its diagonals bisects each other and since G is the midpoint of M_1M_3 then G is also the midpoint of M_5M_6 .

Therefore, the segments M_1M_3 , M_2M_4 , M_5M_6 are concurrent in a point G that bisects them all.

Observe that also the quadrilateral M₄M₅M₂M₆ is a parallelogram.

Figure 4. Q in case1

Case 2. Q has exactly one pair of opposite parallel sides.

Assume that AB is parallel to CD.

 $M_4M_5M_2M_6$ does not exist anymore (because the segments M2M6 and M4M5 are parallel to BC and the segments M4M6 and M5M2 are parallel to AB. Since AB is parallel to CD they are all parallel to each other, therefore the points M₂, M₅, M₄ and M₆ are collinear and M₅M₆ is contained in M₂M₄), but the parallelograms M₁M₂M₃M₄ and M₁M₅M₃M₆ still hold and, since they share the diagonal M₁M₃ then they all meet in a point G that bisects M₁M₃, M₂M₄, M₅M₆.

Figure 5. Q in case 2

<u>Case 3</u>. Q is a parallelogram.

If Q is a parallelogram then the parallelograms $M_4M_5M_2M_6$ and $M_1M_5M_3M_6$ do not exist anymore because M_5 and M_6 coincide with G (being G midpoint of the diagonals AC and BD).

Then the problem is solved also in this case.

Figure 6. Q in case 3

Problem 2

Let A', B', C' and D' be the centroids of the triangles BCD, ACD, ABD and ABC respectively.

Prove that

- the segments AA', BB', CC' and DD' are concurrent in G;
- G divides each segment in two parts, the one containing the vertex twice the other one.

Figure 7. Q and centroid segments

SOLUTION

Let M_2 be the midpoint of BC. The segment DM_2 is a median of the triangle BCD, therefore it contains the centroid A'. Let N be the midpoint of DA' and M₄ the midpoint of AD. The segment NM₄ joins the midpoints of the edges DA' and DA of the triangle DAA', then NM₄ is parallel to AA' and AA'=2 NM₄.

Let G be the common point of AA' and M_2M_4 . Let us prove that G is the midpoint of M_2M_4 . In fact, the segment GA' is parallel to NM_4 and passes through the midpoint A' of the edge NM_2 of the triangle NM_2M_4 , then G is the midpoint of M_2M_4 . Moreover it is $NM_4=2GA'$, and then $AA'=2NM_4=4GA'$ and AG=3GA'.

Therefore G lies on the segment AA' and it is such that AG=3GA'; the same holds for the segments BB', CC', DD' and it is BG=3GB', CG=3GC', DG=3GD' (in the proof you should consider the segments M_1M_3 , M_2M_4 and M_1M_3 respectively). Note that the point G bisects the two segments M_1M_3 , M_2M_4 and therefore is the same point G as in Problem 1. This point is knows as centroid of a quadrilateral.

Figure 8. Q and the segment AA'