PROBLEM CORNER

Provided by Daniela Ferrarello, Maria Flavia
Mammana, Mario Pennisi, Eugenia Taranto
University of Catania, Italy
E-mail: mariaflavia.mammana@unict.it

Let Q be a convex quadrilateral with vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.
We call edges of Q the four sides and the two diagonals, $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}, \mathrm{BD}$.

Figure 1. The quadrilateral Q

Problem 1

Let $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$ be the midpoints of the edges $A B, B C, C D, D A, A C$, BD.

Prove that the segments $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}, \mathrm{M}_{5} \mathrm{M}_{6}$ are concurrent in a point G that bisects them all.

Figure 2. Q and the midpoint segments

SOLUTION

In the triangle $A B C$, the segment $\mathrm{M}_{1} \mathrm{M}_{2}$ joins the midpoints of the edges AB and BC , then $M_{1} M_{2}$ is parallel to $A C$ and $M_{1} M_{2}=\frac{1}{2} A C$. Analogously, the segment $M_{3} M_{4}$ is parallel to

AC and $M_{3} M_{4}=\frac{1}{2}$ AC. Therefore, $M_{1} M_{2} M_{3} M_{4}$ is a parallelogram. The common point G of its diagonals bisects both of them, $\mathrm{M}_{1} \mathrm{M}_{3}$ and $\mathrm{M}_{2} \mathrm{M}_{4}$.

Figure 3. Q and the parallelogram $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4}$
Let us consider different cases on Q.
Case 1. Q does not have any pairs of opposite parallel sides.
In the triangle $A B C$, the segment $M_{1} M_{5}$ joins the midpoints of the edges $A B$ and $A C$, then $M_{1} M_{5}$ is parallel to $B C$ and $M_{1} M_{5}=\frac{1}{2} B C$. Analogously, the segment $M_{3} M_{6}$ is parallel to $B C$ and $M_{3} M_{6}=\frac{1}{2} B C$. Therefore, $M_{1} M_{5} M_{3} M_{6}$ is a parallelogram. Its diagonals bisects each other and since G is the midpoint of $M_{1} M_{3}$ then G is also the midpoint of $M_{5} M_{6}$.

Therefore, the segments $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}, \mathrm{M}_{5} \mathrm{M}_{6}$ are concurrent in a point G that bisects them all.

Observe that also the quadrilateral $\mathrm{M}_{4} \mathrm{M}_{5} \mathrm{M}_{2} \mathrm{M}_{6}$ is a parallelogram.

Figure 4. Q in case 1

Case 2. Q has exactly one pair of opposite parallel sides.

Assume that AB is parallel to CD .
$\mathrm{M}_{4} \mathrm{M}_{5} \mathrm{M}_{2} \mathrm{M}_{6}$ does not exist anymore (because the segments M2M6 and M4M5 are parallel to BC and the segments M4M6 and M5M2 are parallel to AB. Since AB is parallel to $C D$ they are all parallel to each other, therefore the points M_{2}, M_{5}, M_{4} and M_{6} are collinear and $\mathrm{M}_{5} \mathrm{M}_{6}$ is contained in $\mathrm{M}_{2} \mathrm{M}_{4}$), but the parallelograms $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4}$ and $M_{1} M_{5} M_{3} M_{6}$ still hold and, since they share the diagonal $M_{1} M_{3}$ then they all meet in a point G that bisects $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}, \mathrm{M}_{5} \mathrm{M}_{6}$.

Figure 5. Q in case 2

Case 3. Q is a parallelogram.
If Q is a parallelogram then the parallelograms $\mathrm{M}_{4} \mathrm{M}_{5} \mathrm{M}_{2} \mathrm{M}_{6}$ and $\mathrm{M}_{1} \mathrm{M}_{5} \mathrm{M}_{3} \mathrm{M}_{6}$ do not exist anymore because M_{5} and M_{6} coincide with G (being G midpoint of the diagonals AC and BD).

Then the problem is solved also in this case.

Figure 6. Q in case 3

Problem 2

Let $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ and D^{\prime} be the centroids of the triangles $\mathrm{BCD}, \mathrm{ACD}, \mathrm{ABD}$ and ABC respectively.

Prove that

- the segments $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ and DD^{\prime} are concurrent in G ;
- G divides each segment in two parts, the one containing the vertex twice the other one.

Figure 7. Q and centroid segments

SOLUTION

Let M_{2} be the midpoint of BC . The segment DM_{2} is a median of the triangle BCD , therefore it contains the centroid A^{\prime}. Let N be the midpoint of DA^{\prime} and M_{4} the midpoint of AD . The segment NM_{4} joins the midpoints of the edges DA^{\prime} and DA of the triangle DAA^{\prime}, then NM_{4} is parallel to AA^{\prime} and $\mathrm{AA}^{\prime}=2 \mathrm{NM}_{4}$.

Let G be the common point of AA^{\prime} and $\mathrm{M}_{2} \mathrm{M}_{4}$. Let us prove that G is the midpoint of $\mathrm{M}_{2} \mathrm{M}_{4}$. In fact, the segment GA^{\prime} is parallel to NM_{4} and passes through the midpoint A^{\prime} of the edge NM_{2} of the triangle $\mathrm{NM}_{2} \mathrm{M}_{4}$, then G is the midpoint of $\mathrm{M}_{2} \mathrm{M}_{4}$. Moreover it is $\mathrm{NM}_{4}=2 \mathrm{GA}^{\prime}$, and then $\mathrm{AA}^{\prime}=2 \mathrm{NM}_{4}=4 \mathrm{GA}^{\prime}$ and $\mathrm{AG}=3 \mathrm{GA}^{\prime}$.

Therefore G lies on the segment $A A^{\prime}$ and it is such that $\mathrm{AG}=3 \mathrm{GA}^{\prime}$; the same holds for the segments $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$ and it is $\mathrm{BG}=3 \mathrm{~GB}^{\prime}, \mathrm{CG}=3 \mathrm{GC}^{\prime}, \mathrm{DG}=3 \mathrm{GD}^{\prime}$ (in the proof you should consider the segments $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}$ and $\mathrm{M}_{1} \mathrm{M}_{3}$ respectively). Note that the point G bisects the two segments $\mathrm{M}_{1} \mathrm{M}_{3}, \mathrm{M}_{2} \mathrm{M}_{4}$ and therefore is the same point G as in Problem 1. This point is knows as centroid of a quadrilateral.

Figure 8. Q and the segment AA^{\prime}

