PROBLEM CORNER

Problems are proposed by Moshe Stupel
Shaanan College and Gordon College, Haifa, Israel

Solution to problem 1 is proposed by Nubar Nuraddinl
(email: nnuraddinli16272@ada.edu.az)
Solution to problem 2 is provided by Nigar
Valiyeva
(email: nvaliyeva17883@ada.edu.az), ADA
University, Baku, Azerbaijan
School of IT and Engineering, ADA University, Baku, Azerbaijan AZ1008

Problem 1

The ABCD is a cyclic quadrilateral. The line containing the segment AD and the line containing the segment BC intersect at point M . The line containing the segment AB and the line containing segment DC intersect at point P. The angles bisectors intersect the sides of the quadrilateral in the points: K, I, N, G (see Figure 1). Prove that: (1) $\mathrm{PK}=\mathrm{PN}$, (2) $\angle M O P=90$, (3) KING quadrilateral is a rhombus.

Figure 1.

Solution:

It is easy to prove (1) and (3) by using proof of (2). In order to prove (2), some angles are named by letters to make it easier to solve.

- $\angle A D C=\mathrm{Q}, \angle A B C=\mathrm{H}, \angle D C B=\mathrm{L}, \angle D A B=\mathrm{J}, \angle B P C=2 \mathrm{~F}, \angle D M C=2 \mathrm{E}$,
$\angle M N C=\mathrm{V}, \quad \angle P I C=\mathrm{Z}, \quad \angle M O P=\mathrm{X}$
- $\mathrm{Q}+\mathrm{H}=180^{\circ}, \mathrm{L}+\mathrm{J}=180^{\circ} \quad 2 \mathrm{~F}+\mathrm{H}+\mathrm{L}=180^{\circ} \quad 2 \mathrm{E}+\mathrm{Q}+\mathrm{L}=180^{\circ}$
- Sum of last two given equations which is $2 \mathrm{~F}+\mathrm{H}+\mathrm{L}+2 \mathrm{E}+\mathrm{Q}+\mathrm{L}=360^{\circ}$, since $\mathrm{Q}+\mathrm{H}=$ 180°, we see $2 \mathrm{~F}+2 \mathrm{~L}+2 \mathrm{E}=180^{\circ}$ and $\mathrm{F}+\mathrm{L}+\mathrm{E}=90^{\circ}$
- $\mathrm{F}+\mathrm{Z}+\mathrm{L}=180^{\circ}$ and $\mathrm{V}+\mathrm{L}+\mathrm{E}=180^{\circ}$, sum of them is $\mathrm{F}+\mathrm{Z}+\mathrm{L}+\mathrm{V}+\mathrm{L}+\mathrm{E}=360^{\circ}$, Since we found that $\mathrm{F}+\mathrm{L}+\mathrm{E}=90^{\circ}$, then $\mathrm{Z}+\mathrm{L}+\mathrm{V}=270^{\circ}$
- Finally, $\mathrm{X}+\mathrm{Z}+\mathrm{L}+\mathrm{V}=360^{\circ}$, since $\mathrm{Z}+\mathrm{L}+\mathrm{V}=270^{\circ}$, then $\mathrm{X}=90^{\circ}$, it is proved that $\angle M O P=90^{\circ}$

After the proof of (2), we can easily prove (1) by using (2):
Since $\angle M O P=90^{\circ}$, PO is the height of KPN triangle and since $\angle O P N=\angle O P K$, it is trivial to see $\mathrm{NO}=\mathrm{OK}$, which gives $\mathrm{PN}=\mathrm{PK}$.

The solution to (3) is to make use of the proof of (2):
Since $\angle M O P=90^{\circ}$, MO is the height of IMG triangle as well, and since $\angle M G I=\angle M I G$,
$\mathrm{GO}=\mathrm{OI}, \mathrm{GK}=\mathrm{KI}$ and $\mathrm{GK}=\mathrm{GN}$, we see $\mathrm{KI}=\mathrm{GN}=\mathrm{GK}$. Obviously, NI should also be equal to $\mathrm{KI}=\mathrm{GN}=\mathrm{GK}$ and since its diagonals are perpendicular as well, KING is clearly a rhombus.

Problem 2

Three circles with the same radius R and centers at points O_{1}, O_{2} and O_{3} are all intersected at one point D. Circles O_{1} and O_{2} are also intersected at the point A. Circles O_{1} and O_{3} are also intersected at point B and circles O_{2} and O_{3} are also intersected at point C, as shown in the Figure 2. It must be proved that the circle passing through the 3 points A, B, C has always (constantly) the same radius R, when there is a change in the location of the intersection points A or B or C.

Figure 2

Solution:

Let the circles with the centers O_{1}, O_{2}, O_{3} have the same radius R. We observe that $O_{1} B O_{3} D$ is a rhombus, because $O_{1} B=B O_{3}=O_{3} D=O_{1} D=R$. Then $O_{1} B \| O_{3} D$ and $O_{1} D \| B O_{3}$, according to the properties of the rhombus. $A O_{2} \| O_{1} D$ by the same property, and we conclude that $A O_{2}\left\|O_{1} D\right\| B O_{3}$ $\Rightarrow A O_{2} \| B O_{3}$. By the same approach, it can be proved that $O_{1} A\left\|C O_{3}, B O_{1}\right\| C O_{2}$. At the same time, we observe that $O_{1} A=C O_{3}=B O_{1}=C O_{2}=A O_{2}=B O_{3}=R$. We can create the rhombus $A O_{1} B O_{4}$ from the triangle $A O_{1} B$. Then $A O_{4} C O_{2}$ is also a rhombus, because $A O_{1}=O_{1} B=A O_{4}=O_{4} B$ $=A O_{2}=O_{2} C=R$. Thus, $A O_{4}=B O_{4}=C O_{4}=R$, which means that O_{4} is the center of the circumcircle of the triangle $A B C \Rightarrow$ the radius of this circle is also R. We have proved that the radius of the circle with the center O_{4} is equal to the radii of the circles with centers O_{1}, O_{2}, O_{3}. This condition is true, whenever the radii of three intersecting circles are equal, and does not depend on the change of location of the intersection points.

